Substrate effect on the melting temperature of gold nanoparticles

被引:26
|
作者
Luo, Wenhua [1 ]
Su, Kalin [1 ]
Li, Kemin [1 ]
Liao, Gaohua [2 ]
Hu, Nengwen [2 ]
Jia, Ming [3 ]
机构
[1] Hunan Inst Sci & Technol, Coll Phys & Elect, Yueyang 414000, Peoples R China
[2] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[3] Cent South Univ, Sch Met Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-TENSION; NANOSTRUCTURED MATERIALS; THERMODYNAMIC PROPERTIES; SIZE; PARTICLES; ENERGY; MODEL; AU; POINT; SHAPE;
D O I
10.1063/1.4729910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previous experimental, molecular dynamics, and thermodynamic researches on the melting temperature of Au nanoparticles on tungsten substrate provide entirely different results. To account for the substrate effect upon the melting point of nanoparticles, three different substrates were tested by using a thermodynamic model: tungsten, amorphous carbon, and graphite. The results reveal that the melting point suppression of a substrate-supported Au nanoparticle is principally ruled by the free surface-to-volume ratio of the particle or the contact angle between the particle and the substrate. When the contact angle theta is less than 90 degrees, a stronger size-dependent melting point depression compared with those for free nanoparticles is predicted; when the contact angle theta is greater than 90 degrees, the melting temperature of the supported Au nanoparticles are somewhat higher than those for free nanoparticles. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729910]
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Effect of the electric potential on the interaction of gold nanoparticles deposited on a graphite substrate with molecular hydrogen
    Gatin, A. K.
    Grishin, M. V.
    Kolchenko, N. N.
    Sarvadii, S. Yu.
    Shub, B. R.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 11 (02) : 370 - 374
  • [22] The effect of gold nanoparticles on the spreading of triple line
    Vafaei, Saeid
    Wen, Dongsheng
    MICROFLUIDICS AND NANOFLUIDICS, 2010, 8 (06) : 843 - 848
  • [23] The size-shape dependent Debye temperature, melting entropy and melting enthalpy theoretical models for metallic nanomaterial
    Zhang, Xianhe
    Li, Weiguo
    Wu, Dong
    Xu, Hechen
    Deng, Yong
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 297
  • [24] Size-dependent melting temperature of nanoparticles based on cohesive energy
    Huo, Kai-Tuo
    Chen, Xiao-Ming
    MODERN PHYSICS LETTERS B, 2014, 28 (19):
  • [25] Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles
    Makarov, G. N.
    PHYSICS-USPEKHI, 2010, 53 (02) : 179 - 198
  • [26] Formation of gold nanoparticles in polymeric nanowires by low-temperature thermolysis of gold mesitylene
    Erk, Christoph
    Yau, Man Yan Eric
    Lange, Holger
    Thomsen, Christian
    Miclea, Paul
    Wehrspohn, Ralf B.
    Schlecht, Sabine
    Steinhart, Martin
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (02) : 684 - 690
  • [27] Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles
    Sneha, Krishnamurthy
    Sathishkumar, Muthuswamy
    Kim, Sok
    Yun, Yeoung-Sang
    PROCESS BIOCHEMISTRY, 2010, 45 (09) : 1450 - 1458
  • [28] Water dissociation on a gold cluster: the effect of carbon nanostructures as a substrate
    Jena, Naresh K.
    Chandrakumar, K. R. S.
    Ghosh, Swapan K.
    RSC ADVANCES, 2012, 2 (27): : 10262 - 10267
  • [29] Chemical ordering effect on melting temperature, surface energy of copper-gold bimetallic nanocluster
    Taherkhani, Farid
    Akbarzadeh, Hamed
    Rezania, Hamed
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 617 : 746 - 750
  • [30] Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles
    Martinsson, Erik
    Otte, Marinus A.
    Shahjamali, Mohammad Mehdi
    Sepulveda, Borja
    Aili, Daniel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (42) : 24680 - 24687