Substrate effect on the melting temperature of gold nanoparticles

被引:26
作者
Luo, Wenhua [1 ]
Su, Kalin [1 ]
Li, Kemin [1 ]
Liao, Gaohua [2 ]
Hu, Nengwen [2 ]
Jia, Ming [3 ]
机构
[1] Hunan Inst Sci & Technol, Coll Phys & Elect, Yueyang 414000, Peoples R China
[2] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[3] Cent South Univ, Sch Met Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-TENSION; NANOSTRUCTURED MATERIALS; THERMODYNAMIC PROPERTIES; SIZE; PARTICLES; ENERGY; MODEL; AU; POINT; SHAPE;
D O I
10.1063/1.4729910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previous experimental, molecular dynamics, and thermodynamic researches on the melting temperature of Au nanoparticles on tungsten substrate provide entirely different results. To account for the substrate effect upon the melting point of nanoparticles, three different substrates were tested by using a thermodynamic model: tungsten, amorphous carbon, and graphite. The results reveal that the melting point suppression of a substrate-supported Au nanoparticle is principally ruled by the free surface-to-volume ratio of the particle or the contact angle between the particle and the substrate. When the contact angle theta is less than 90 degrees, a stronger size-dependent melting point depression compared with those for free nanoparticles is predicted; when the contact angle theta is greater than 90 degrees, the melting temperature of the supported Au nanoparticles are somewhat higher than those for free nanoparticles. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729910]
引用
收藏
页数:6
相关论文
共 52 条
[11]   SGTE DATA FOR PURE ELEMENTS [J].
DINSDALE, AT .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1991, 15 (04) :317-425
[12]  
Edelstein A.S. C., 1998, Nanomaterials
[13]  
Synthesis, Properties and Applications
[14]   CALCULATION OF SOLID-LIQUID-VAPOR CONTACT ANGLES FOR BINARY METALLIC SYSTEMS [J].
EUSTATHOPOULOS, N ;
PIQUE, D .
SCRIPTA METALLURGICA, 1980, 14 (12) :1291-1296
[15]   Nanostructured materials: Basic concepts and microstructure [J].
Gleiter, H .
ACTA MATERIALIA, 2000, 48 (01) :1-29
[16]   Mechanical and thermal properties of metallic and semiconductive nanostructures [J].
Guisbiers, G. ;
Kazan, M. ;
Van Overschelde, O. ;
Wautelet, M. ;
Pereira, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4097-4103
[17]   Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate [J].
Guisbiers, G. ;
Wautelet, M. .
NANOTECHNOLOGY, 2006, 17 (08) :2008-2011
[18]   Size-Dependent Materials Properties Toward a Universal Equation [J].
Guisbiers, G. .
NANOSCALE RESEARCH LETTERS, 2010, 5 (07) :1132-1136
[19]   Universal size/shape-dependent law for characteristic temperatures [J].
Guisbiers, G. ;
Buchaillot, L. .
PHYSICS LETTERS A, 2009, 374 (02) :305-308
[20]   Lattice contractions of a nanoparticle due to the surface tension: A model of elasticity [J].
Huang, Zaixing ;
Thomson, Peter ;
Di, Shenglin .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (04) :530-535