Substrate effect on the melting temperature of gold nanoparticles

被引:26
|
作者
Luo, Wenhua [1 ]
Su, Kalin [1 ]
Li, Kemin [1 ]
Liao, Gaohua [2 ]
Hu, Nengwen [2 ]
Jia, Ming [3 ]
机构
[1] Hunan Inst Sci & Technol, Coll Phys & Elect, Yueyang 414000, Peoples R China
[2] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[3] Cent South Univ, Sch Met Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-TENSION; NANOSTRUCTURED MATERIALS; THERMODYNAMIC PROPERTIES; SIZE; PARTICLES; ENERGY; MODEL; AU; POINT; SHAPE;
D O I
10.1063/1.4729910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previous experimental, molecular dynamics, and thermodynamic researches on the melting temperature of Au nanoparticles on tungsten substrate provide entirely different results. To account for the substrate effect upon the melting point of nanoparticles, three different substrates were tested by using a thermodynamic model: tungsten, amorphous carbon, and graphite. The results reveal that the melting point suppression of a substrate-supported Au nanoparticle is principally ruled by the free surface-to-volume ratio of the particle or the contact angle between the particle and the substrate. When the contact angle theta is less than 90 degrees, a stronger size-dependent melting point depression compared with those for free nanoparticles is predicted; when the contact angle theta is greater than 90 degrees, the melting temperature of the supported Au nanoparticles are somewhat higher than those for free nanoparticles. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729910]
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Interior Melting of Rapidly Heated Gold Nanoparticles
    Chen, Jixing
    Fan, Xiaofeng
    Liu, Jialin
    Gu, Changzhi
    Shi, Yunfeng
    Zheng, Weitao
    Singh, David J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (34) : 8170 - 8177
  • [2] Surface stress of gold nanoparticles revisited
    Holec, David
    Loefler, Lukas
    Zickler, Gerald A.
    Vollath, Dieter
    Fischer, Franz Dieter
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2021, 224
  • [3] The effect of temperature on the aggregation kinetics of partially bare gold nanoparticles
    Dutta, Anushree
    Paul, Anumita
    Chattopadhyay, Arun
    RSC ADVANCES, 2016, 6 (85) : 82138 - 82149
  • [4] Modeling the melting temperature, melting entropy and melting enthalpy of freestanding metallic nanoparticles
    Jiang, Xiao Bao
    Xiao, Bei Bei
    Lan, Rui
    Gu, Xiao Yan
    Sheng, Hong Chao
    Zhang, Xing Hua
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 241
  • [5] Dimension Dependent Melting Temperature of Metallic Nanoparticles
    Shah, Niyati
    Gupta, Sanjeev K.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [6] Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles
    Levitas, Valery I.
    Pantoya, Michelle L.
    Chauhan, Garima
    Rivero, Iris
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (32) : 14088 - 14096
  • [7] Dimensional effect on cohesive energy, melting temperature and Debye temperature of metallic nanoparticles
    Sachin, Brijesh Kumar
    Pandey, Brijesh Kumar
    Jaiswal, Ratan Lal
    PHYSICA B-CONDENSED MATTER, 2023, 651
  • [8] Effect of Temperature on Coalescence Behavior of Unsupported Gold Nanoparticles
    Yun, Kayoung
    Lee, Jaegab
    Nam, Ho-Seok
    ELECTRONIC MATERIALS LETTERS, 2019, 15 (01) : 133 - 139
  • [9] Effect of clustering on ellipsometric spectra of randomly distributed gold nanoparticles on a substrate
    Xie, Huai-Yi
    Chang, Yia-Chung
    Li, Guangwei
    Hsu, Shih-Hsin
    OPTICS EXPRESS, 2013, 21 (03): : 3091 - 3102
  • [10] Shape and size dependent melting point temperature of nanoparticles
    Gupta, Sanjeev K.
    Talati, Mina
    Jha, Prafulla K.
    METASTABLE AND NANOSTRUCTURED MATERIALS III, 2008, 570 : 132 - +