Infinite divisibility and a non-commutative Boolean-to-free Bercovici-Pata bijection

被引:26
作者
Belinschi, S. T. [1 ,2 ]
Popa, M. [2 ,3 ]
Vinnikov, V. [4 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
[3] Ben Gurion Univ Negev, Ctr Adv Studies Math, IL-84105 Beer Sheva, Israel
[4] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
基金
加拿大自然科学与工程研究理事会;
关键词
Operator-valued free probability; Non-commutative functions; Limit theorems; Bercovici-Pata bijection; MONOTONIC INDEPENDENCE; LIMIT-THEOREMS; FREE-PRODUCTS; CONVOLUTION;
D O I
10.1016/j.jfa.2011.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the theory of fully matricial, or non-commutative, functions to investigate infinite divisibility and limit theorems in operator-valued non-commutative probability. Our main result is an operator-valued analogue for the Bercovici-Pata bijection. An important tool is Voiculescu's subordination property for operator-valued free convolution. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 123
页数:30
相关论文
共 28 条
[1]  
Akhieser N.I., 1965, CLASSICAL MOMENT PRO
[2]  
[Anonymous], N HOLLAND MATH STUD
[3]   On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution [J].
Belinschi, Serban T. ;
Nica, Alexandru .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (04) :1679-1713
[4]  
Belinschi ST, 2008, VON NEUMANN ALGEBRAS IN SIBIU, CONFERENCE PROCEEDINGS, P1
[5]   Stable laws and domains of attraction in free probability theory [J].
Bercovici, H ;
Pata, V .
ANNALS OF MATHEMATICS, 1999, 149 (03) :1023-1060
[6]   FREE CONVOLUTION OF MEASURES WITH UNBOUNDED SUPPORT [J].
BERCOVICI, H ;
VOICULESCU, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :733-773
[7]   Embeddings of reduced free products of operator algebras [J].
Blanchard, EF ;
Dykema, KJ .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 199 (01) :1-19
[8]   FREE-PRODUCTS OF COMPLETELY POSITIVE MAPS AND SPECTRAL SETS [J].
BOCA, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 97 (02) :251-263
[9]  
Bozejko M, 1996, PAC J MATH, V175, P357
[10]  
Kaliuzhnyi-Verbovetskyi D.S., FDN NONCOMMUTATIVE F