Graded rings and equivariant sheaves on toric varieties

被引:32
作者
Perling, M [1 ]
机构
[1] Univ Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
关键词
toric varieties; equivariant sheaves;
D O I
10.1002/mana.200310130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we derive a formalism for describing equivariant sheaves over toric varieties. This formalism is a generalization of a correspondence due to Klyachko, which states that equivariant vector bundles on toric varieties are equivalent to certain sets of filtrations of vector spaces. We systematically construct the theory from the point of view of graded ring theory and this way we clarify earlier constructions of Kaneyama and Klyachko. We also connect the formalism to the theory of fine-graded modules over Cox' homogeneous coordinate ring of a toric variety. As an application we construct minimal resolutions of equivariant vector bundles of rank two on toric surfaces. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 10 条
[1]   ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES [J].
BATYREV, VV ;
COX, DA .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :293-338
[2]  
Bayer D, 1998, MATH RES LETT, V5, P31
[3]  
Brion M, 1997, J REINE ANGEW MATH, V482, P67
[4]  
Cox D. A., 1995, J. Algebraic Geom., V4, P17
[5]  
Jac94] Jaczewski K., 1994, CLASSIFICATION ALGEB, V162, P227
[6]   EQUIVARIANT VECTOR BUNDLES ON AN ALMOST HOMOGENEOUS VARIETY [J].
KANEYAMA, T .
NAGOYA MATHEMATICAL JOURNAL, 1975, 57 (JUN) :65-86
[7]   TORUS-EQUIVARIANT VECTOR-BUNDLES ON PROJECTIVE SPACES [J].
KANEYAMA, T .
NAGOYA MATHEMATICAL JOURNAL, 1988, 111 :25-40
[8]  
Klyachko AA., 1990, MATH USSR IZV+, V35, P337, DOI DOI 10.1070/IM1990V035N02ABEH000707
[9]   Vanishing theorems on toric varieties [J].
Mustata, M .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (03) :451-470
[10]  
REID M, 1980, GEOMETRIE ALGEBRIQUE, P273