Orbit representations and circle maps

被引:4
作者
Ramos, Carlos Correia [1 ]
Martins, Nuno [2 ]
Pinto, Paulo R. [2 ]
机构
[1] Univ Evora, Dept Math, R Romao Ramalho 59, P-7000671 Evora, Portugal
[2] Ctr Analise Matemat Geometria & Sistemas Dinam, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
来源
OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS | 2008年 / 181卷
关键词
interval maps; irrational rotation algebra; Cuntz-Krieger algebra; irreducible representations;
D O I
10.1007/978-3-7643-8684-9_21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We yield C*-algebras representations on the orbit spaces from the family of interval maps f (x) = beta x + alpha (mod 1) lifted to circle maps, in which case beta is an element of N. Each orbit will encode an unitary equivalence class of an irreducible representation of: a Cuntz algebra O-beta if alpha = 0 and beta > 1; an irrational rotation algebra A(beta) if alpha is not an element of Q and beta = 1; and a Cuntz-Krieger O-A alpha,O-beta whenever beta > 1 and the critical point is periodic, where A(alpha,beta) is the underlying Markov transition matrix of f.
引用
收藏
页码:417 / +
页数:3
相关论文
共 20 条
[1]  
Abe M, 2002, COMMUN MATH PHYS, V228, P85, DOI 10.1007/s002200200651
[2]  
[Anonymous], 2004, MEM AM MATH SOC
[3]  
BAUMSLAG G, 1962, B AM MATH SOC, V68, P199, DOI 10.1090/S0002-9904-1962-10745-9
[4]  
Bratteli O, 1999, MEM AM MATH SOC, V139, P1
[5]   REPRESENTATIONS AND AUTOMORPHISMS OF THE IRRATIONAL ROTATION ALGEBRA [J].
BRENKEN, BA .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 111 (02) :257-282
[6]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[7]   Invariant subspaces and hyper-reflexivity for free semigroup algebras [J].
Davidson, KR ;
Pitts, DR .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 78 :401-430
[8]   SUBRELATIONS OF ERGODIC EQUIVALENCE-RELATIONS [J].
FELDMAN, J ;
SUTHERLAND, CE ;
ZIMMER, RJ .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :239-269
[9]  
HOEGHKROHN R, 1981, J REINE ANGEW MATH, V328, P1
[10]  
KAWAMURA K, 2003, RIMS1396