Micro- and nanotechnology in cardiovascular tissue engineering

被引:49
作者
Zhang, Boyang [1 ,2 ]
Xiao, Yun [1 ,2 ]
Hsieh, Anne [1 ,2 ]
Thavandiran, Nimalan [1 ,2 ]
Radisic, Milica [1 ,2 ,3 ]
机构
[1] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3G9, Canada
[2] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
[3] Univ Toronto, Heart & Stroke Richard Lewar Ctr Excellence, Toronto, ON M5S 3G9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CARDIAC TISSUE; SUBSTRATE STIFFNESS; SOFT LITHOGRAPHY; FABRICATION; SCAFFOLDS; CULTURE; FORCE; SIZE; DIFFERENTIATION; GENERATION;
D O I
10.1088/0957-4484/22/49/494003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro-and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
引用
收藏
页数:10
相关论文
共 85 条
[1]   Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities [J].
Andersson, H ;
van den Berg, A .
LAB ON A CHIP, 2004, 4 (02) :98-103
[2]   A Method to Replicate the Microstructure of Heart Tissue In Vitro Using DTMRI-Based Cell Micropatterning [J].
Badie, Nima ;
Satterwhite, Lisa ;
Bursac, Nenad .
ANNALS OF BIOMEDICAL ENGINEERING, 2009, 37 (12) :2510-2521
[3]   Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure [J].
Badie, Nima ;
Bursac, Nenad .
BIOPHYSICAL JOURNAL, 2009, 96 (09) :3873-3885
[4]   Nanofiber Assembly by Rotary Jet-Spinning [J].
Badrossamay, Mohammad Reza ;
McIlwee, Holly Alice ;
Goss, Josue A. ;
Parker, Kevin Kit .
NANO LETTERS, 2010, 10 (06) :2257-2261
[5]   Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories [J].
Bauwens, Celine Liu ;
Peerani, Raheem ;
Niebruegge, Sylvia ;
Woodhouse, Kimberly A. ;
Kumacheva, Eugenia ;
Husain, Mansoor ;
Zandstra, Peter W. .
STEM CELLS, 2008, 26 (09) :2300-2310
[6]   PRODUCTION OF A TISSUE-LIKE STRUCTURE BY CONTRACTION OF COLLAGEN LATTICES BY HUMAN-FIBROBLASTS OF DIFFERENT PROLIFERATIVE POTENTIAL INVITRO [J].
BELL, E ;
IVARSSON, B ;
MERRILL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1274-1278
[7]   Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer [J].
Bettinger, CJ ;
Weinberg, EJ ;
Kulig, KM ;
Vacanti, JP ;
Wang, YD ;
Borenstein, JT ;
Langer, R .
ADVANCED MATERIALS, 2006, 18 (02) :165-+
[8]   Influence of Substrate Stiffness on the Phenotype of Heart Cells [J].
Bhana, Bashir ;
Iyer, Rohin K. ;
Chen, Wen Li Kelly ;
Zhao, Ruogang ;
Sider, Krista L. ;
Likhitpanichkul, Morakot ;
Simmons, Craig A. ;
Radisic, Milica .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 105 (06) :1148-1160
[9]   Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues [J].
Bian, Weining ;
Liau, Brian ;
Badie, Nima ;
Bursac, Nenad .
NATURE PROTOCOLS, 2009, 4 (10) :1522-1534
[10]  
Black LD, 2009, TISSUE ENG PT A, V15, P3099, DOI [10.1089/ten.tea.2008.0502, 10.1089/ten.TEA.2008.0502]