The Novikov conjecture for hyperbolic foliations

被引:81
作者
Tu, JL [1 ]
机构
[1] Univ Paris 06, Math Inst, F-75252 Paris 05, France
关键词
C*-algebra; equivariant KK-theory; groupoid; foliation; Baum-Connes conjecture; Novikov conjecture;
D O I
10.1023/A:1007756501903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the notion of 'bolicity' for foliations, which is a weaker notion than Gromov's hyperbolicity, and we prove the Novikov conjecture for foliations with compact base and whose holonomy groupoid is Hausdorff, by showing that the Baum-Connes map is injective. This result generalizes that of Kasparov and Skandalis in the case of 'bolic' groups.
引用
收藏
页码:129 / 184
页数:56
相关论文
共 25 条
[1]  
BAAJ S, 1989, K-THEORY, V2, P683
[2]  
BAUM P, 1982, P SYMP PURE MATH, V38, P117
[3]  
BAUM P, 1982, GEOMETRIC K THEORY L
[4]  
BAUM P, 1983, LEAFWISE HOMOTOPY EQ
[5]  
Baum P., 1994, Contemp. Math., V167, P240, DOI 10.1090/conm/167/1292018
[6]  
Blackadar B., 1986, MATH SCI RES I PUBLI, V5
[7]  
BLANCHARD E, 1993, THESIS U PARIS 7
[8]  
BOURBAKI N, 1960, TOPOLOGIE GEN
[9]   CYCLIC COHOMOLOGY, THE NOVIKOV-CONJECTURE AND HYPERBOLIC GROUPS [J].
CONNES, A ;
MOSCOVICI, H .
TOPOLOGY, 1990, 29 (03) :345-388
[10]   THE LONGITUDINAL INDEX THEOREM FOR FOLIATIONS [J].
CONNES, A ;
SKANDALIS, G .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (06) :1139-1183