Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover

被引:140
作者
Goldblatt, Ran [1 ]
Stuhlmacher, Michelle F. [2 ]
Tellman, Beth [2 ]
Clinton, Nicholas [3 ]
Hanson, Gordon [1 ]
Georgescu, Matei [2 ]
Wang, Chuyuan [2 ]
Serrano-Candela, Fidel [4 ]
Khandelwal, Amit K. [5 ]
Cheng, Wan-Hwa [2 ]
Balling, Robert C., Jr. [2 ]
机构
[1] Univ Calif San Diego, Sch Global Policy & Strategy, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Arizona State Univ, Sch Geog Sci & Urban Planning, 976 S Forest Mall, Tempe, AZ 85281 USA
[3] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[4] Univ Nacl Autonoma Mexico, Lab Nacl Ciencias Sostenibilidad, Apartado Postal 70-275 Ciudad Univ, Mexico City, DF, Mexico
[5] Columbia Univ, Columbia Business Sch, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Urbanization; Built-up land cover; Nighttime light; Image classification; Google Earth Engine; DIFFERENCE WATER INDEX; BUILT-UP INDEX; TIME-SERIES; HEAT-ISLAND; AREAS; CHINA; URBANIZATION; MAP; SETTLEMENTS; EXTENTS;
D O I
10.1016/j.rse.2017.11.026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30 m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.
引用
收藏
页码:253 / 275
页数:23
相关论文
共 112 条
[71]   Using the satellite-derived NDVI to assess ecological responses to environmental change [J].
Pettorelli, N ;
Vik, JO ;
Mysterud, A ;
Gaillard, JM ;
Tucker, CJ ;
Stenseth, NC .
TRENDS IN ECOLOGY & EVOLUTION, 2005, 20 (09) :503-510
[72]   Mapping urban areas on a global scale: which of the eight maps now available is more accurate? [J].
Potere, David ;
Schneider, Annemarie ;
Angel, Shlomo ;
Civco, Daniel L. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (24) :6531-6558
[73]   Landsat 8 vs. Landsat 5: A comparison based on urban and pen-urban land cover mapping [J].
Poursanidis, Dimitris ;
Chrysoulakis, Nektarios ;
Mitraka, Zina .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 35 :259-269
[74]   Sampling for forest cover change assessment at the pan-tropical scale [J].
Richards, T ;
Gallego, J ;
Achard, F .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) :1473-1490
[75]   An assessment of the effectiveness of a random forest classifier for land-cover classification [J].
Rodriguez-Galiano, V. F. ;
Ghimire, B. ;
Rogan, J. ;
Chica-Olmo, M. ;
Rigol-Sanchez, J. P. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2012, 67 :93-104
[76]  
Rwanga S. S., 2017, International Journal of Geosciences, V8, P611, DOI 10.4236/ijg.2017.84033
[77]  
Schlesinger J, 2015, LECT NOTES GEOINF CA, P295, DOI 10.1007/978-3-319-14280-7_15
[78]   A new map of global urban extent from MODIS satellite data [J].
Schneider, A. ;
Friedl, M. A. ;
Potere, D. .
ENVIRONMENTAL RESEARCH LETTERS, 2009, 4 (04)
[79]   Mapping global urban areas using MODIS 500-m data: New methods and datasets based on 'urban ecoregions' [J].
Schneider, Annemarie ;
Friedl, Mark A. ;
Potere, David .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (08) :1733-1746
[80]   A Meta-Analysis of Global Urban Land Expansion [J].
Seto, Karen C. ;
Fragkias, Michail ;
Gueneralp, Burak ;
Reilly, Michael K. .
PLOS ONE, 2011, 6 (08)