Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover

被引:140
作者
Goldblatt, Ran [1 ]
Stuhlmacher, Michelle F. [2 ]
Tellman, Beth [2 ]
Clinton, Nicholas [3 ]
Hanson, Gordon [1 ]
Georgescu, Matei [2 ]
Wang, Chuyuan [2 ]
Serrano-Candela, Fidel [4 ]
Khandelwal, Amit K. [5 ]
Cheng, Wan-Hwa [2 ]
Balling, Robert C., Jr. [2 ]
机构
[1] Univ Calif San Diego, Sch Global Policy & Strategy, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Arizona State Univ, Sch Geog Sci & Urban Planning, 976 S Forest Mall, Tempe, AZ 85281 USA
[3] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[4] Univ Nacl Autonoma Mexico, Lab Nacl Ciencias Sostenibilidad, Apartado Postal 70-275 Ciudad Univ, Mexico City, DF, Mexico
[5] Columbia Univ, Columbia Business Sch, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Urbanization; Built-up land cover; Nighttime light; Image classification; Google Earth Engine; DIFFERENCE WATER INDEX; BUILT-UP INDEX; TIME-SERIES; HEAT-ISLAND; AREAS; CHINA; URBANIZATION; MAP; SETTLEMENTS; EXTENTS;
D O I
10.1016/j.rse.2017.11.026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30 m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.
引用
收藏
页码:253 / 275
页数:23
相关论文
共 112 条
[11]   Rectangular and hexagonal grids used for observation, experiment and simulation in ecology [J].
Birch, Colin P. D. ;
Oom, Sander P. ;
Beecham, Jonathan A. .
ECOLOGICAL MODELLING, 2007, 206 (3-4) :347-359
[12]  
Boucher A., 2009, REMOTE SENSING APPL
[13]  
Census Bureau U. S., 2012, INCREASING URBANIZAT
[14]   Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model [J].
Chen, Chi-Farn ;
Nguyen-Thanh Son ;
Chang, Ni-Bin ;
Chen, Cheng-Ru ;
Chang, Li-Yu ;
Valdez, Miguel ;
Centeno, Gustavo ;
Thompson, Carlos Alberto ;
Aceituno, Jorge Luis .
REMOTE SENSING, 2013, 5 (12) :6408-6426
[15]   Global land cover mapping at 30 m resolution: A POK-based operational approach [J].
Chen, Jun ;
Chen, Jin ;
Liao, Anping ;
Cao, Xin ;
Chen, Lijun ;
Chen, Xuehong ;
He, Chaoying ;
Han, Gang ;
Peng, Shu ;
Lu, Miao ;
Zhang, Weiwei ;
Tong, Xiaohua ;
Mills, Jon .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 103 :7-27
[16]   Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes [J].
Chen, Xiao-Ling ;
Zhao, Hong-Mei ;
Li, Ping-Xiang ;
Yin, Zhi-Yong .
REMOTE SENSING OF ENVIRONMENT, 2006, 104 (02) :133-146
[17]   MODIS detected surface urban heat islands and sinks: Global locations and controls [J].
Clinton, Nicholas ;
Gong, Peng .
REMOTE SENSING OF ENVIRONMENT, 2013, 134 :294-304
[18]  
Connolly P., 2014, REV LATIN AM CITIES
[19]  
Consejo Nacional de Poblacion, 2012, SIST URB NAC
[20]   Adapting to risk and perpetuating poverty: Household's strategies for managing flood risk and water scarcity in Mexico City [J].
Eakin, Hallie ;
Lerner, Amy M. ;
Manuel-Navarrete, David ;
Hernandez Aguilar, Bertha ;
Martinez-Canedo, Alejandra ;
Tellman, Beth ;
Charli-Joseph, Lakshmi ;
Fernandez Alvarez, Rafael ;
Bojorquez-Tapia, Luis .
ENVIRONMENTAL SCIENCE & POLICY, 2016, 66 :324-333