A note on 3-choosability of planar graphs without certain cycles

被引:20
作者
Zhang, L [1 ]
Wu, BD
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Xinjiang Univ Urumqi, Coll Math & Syst Sci, Xinjiang 830046, Peoples R China
关键词
planar graph; cycle; choosability;
D O I
10.1016/j.disc.2005.05.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steinberg asked whether every planar graph without 4 and 5 cycles is 3-colorable. Borodin, and independently Sanders and Zhao, showed that every planar graph without any cycle of length between 4 and 9 is 3-colorable. We improve this result by showing that every planar graph without any cycle of length 4, 5, 6, or 9 is 3-choosable. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:206 / 209
页数:4
相关论文
共 10 条
[1]  
ABBOTT HL, 1991, ARS COMBINATORIA, V32, P203
[2]   COLORINGS AND ORIENTATIONS OF GRAPHS [J].
ALON, N ;
TARSI, M .
COMBINATORICA, 1992, 12 (02) :125-134
[3]  
Borodin OV, 1996, ARS COMBINATORIA, V43, P191
[4]  
Borodin OV, 1996, J GRAPH THEOR, V21, P183
[5]  
BORODIN OV, UNPUB PLANAR GRAPHS
[6]  
Grotzsch H., 1959, MATH NAT REIHE, V8, P109
[7]   A NOTE ON THE 3-COLOR PROBLEM [J].
SANDERS, DP ;
ZHAO, Y .
GRAPHS AND COMBINATORICS, 1995, 11 (01) :91-94
[8]  
Steinberg R., 1993, ANN DISCR M, V55, P211, DOI DOI 10.1016/S0167-5060(08)70391-1
[9]   3-LIST-COLORING PLANAR GRAPHS OF GIRTH-5 [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 64 (01) :101-107
[10]   Analysis of fragment size and ejection velocity at high strain rate [J].
Zhang, YQ ;
Lu, Y ;
Hao, H .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2004, 46 (01) :27-34