Determining the Local Dark Matter Density with SDSS G-dwarf data

被引:1
作者
Silverwood, Hamish [1 ]
Sivertsson, Sofia [2 ]
Read, Justin [3 ]
Bertone, Gianfranco [4 ]
Steger, Pascal [5 ]
机构
[1] Univ Barcelona IEEC UB, Inst Ciencies Cosmos ICCUB, Marti Franques 1, E-08028 Barcelona, Spain
[2] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden
[3] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[4] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[5] Swiss Fed Inst Technol, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
来源
ASTROMETRY AND ASTROPHYSICS IN THE GAIA SKY | 2018年 / 12卷 / S330期
关键词
dark matter; Galaxy: kinematics and dynamics; Galaxy:; disk; etc; EFFICIENT;
D O I
10.1017/S1743921317006044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwood et al. (2016) applied to SDSS-SEGUE G-dwarf data processed by Budenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data using MULTINEST, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the alpha-young population presented in Budenbender et al. (2015), yielding a result of rho DM = 0.46(-0.09)(+0.07) GeV cm(-3) = 0.012(-0.002)(+0.001)M(circle dot) pc(-3). Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.
引用
收藏
页码:255 / 258
页数:4
相关论文
共 10 条
[1]  
[Anonymous], ARXIV13062144
[2]  
Binney J., 2008, Galactic Dynamics: Second Edition
[3]   THE STELLAR POPULATION STRUCTURE OF THE GALACTIC DISK [J].
Bovy, Jo ;
Rix, Hans-Walter ;
Schlafly, Edward F. ;
Nidever, David L. ;
Holtzman, Jon A. ;
Shetrone, Matthew ;
Beers, Timothy C. .
ASTROPHYSICAL JOURNAL, 2016, 823 (01)
[4]   The tilt of the velocity ellipsoid in the Milky Way disc [J].
Buedenbender, Alex ;
van de Ven, Glenn ;
Watkins, Laura L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (01) :956-968
[5]   Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses [J].
Feroz, F. ;
Hobson, M. P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 384 (02) :449-463
[6]   MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics [J].
Feroz, F. ;
Hobson, M. P. ;
Bridges, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 398 (04) :1601-1614
[7]   STARS, GAS, AND DARK MATTER IN THE SOLAR NEIGHBORHOOD [J].
McKee, Christopher F. ;
Parravano, Antonio ;
Hollenbach, David J. .
ASTROPHYSICAL JOURNAL, 2015, 814 (01)
[8]   The local dark matter density [J].
Read, J. I. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2014, 41 (06)
[9]   A non-parametric method for measuring the local dark matter density [J].
Silverwood, H. ;
Sivertsson, S. ;
Steger, P. ;
Read, J. I. ;
Bertone, G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (04) :4191-4208
[10]  
Sivertsson S, 2017, UNPUB