Robust Discriminative Projective Dictionary Pair Learning by Adaptive Representations

被引:0
作者
Sun, Yulin [1 ,2 ]
Zhang, Zhao [1 ,2 ]
Jiang, Weming [1 ,2 ]
Liu, Guangcan [3 ]
Wang, Meng [4 ]
Yan, Shuicheng [5 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Prov Key Lab Comp Informat Proc Technol, Suzhou 215006, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Informat & Control, Nanjing, Jiangsu, Peoples R China
[4] Hefei Univ Technol, Sch Comp & Informat Sci, Hefei, Anhui, Peoples R China
[5] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
来源
2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2018年
基金
中国国家自然科学基金;
关键词
Discriminative adaptive sparse representation; robust projective dictionary pair learning; image classification; K-SVD; SPARSE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we mainly propose a Robust Adaptive Projective Dictionary Pair Learning (RA-DPL) framework based on the adaptive discriminative representations. Our formulation can seamlessly integrate the robust projective dictionary pair learning and the adaptive sparse representation learning into a unified model. RA-DPL improves the existing DPL algorithm in threefold. First, RA-DPL aims at computing the robust projective dictionary pairs by employing the sparse and robust l(2,1)-norm to encode the reconstruction error. Second, RA-DPL regularizes the robust l(2,1)-norm on the analysis dictionary so that the analysis dictionary can extract sparse coefficients from the given samples explicitly. More importantly, the optimization of l(2,1)-norm is so efficient, that is, the sparse coding step will be time-saving. Third, RA-DPL can clearly preserve the local neighborhood relationship of the sparse coefficients within each class, which can make the learnt representations discriminating and can also improve the discriminating power of learnt dictionary. Extensive simulations on image databases demonstrate that our RA-DPL can obtain the superior performance over other state-of-the-arts.
引用
收藏
页码:621 / 626
页数:6
相关论文
共 21 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2015, IEEE T SUSTAIN ENERG
[3]  
[Anonymous], 1998, 24 CVC
[4]   Graph Regularized Nonnegative Matrix Factorization for Data Representation [J].
Cai, Deng ;
He, Xiaofei ;
Han, Jiawei ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1548-1560
[5]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[6]  
Gu S., 2014, P C NEUR INF PROC SY
[7]  
Guo J, 2016, AAAI CONF ARTIF INTE, P1617
[8]   Joint Label Consistent Dictionary Learning and Adaptive Label Prediction for Semisupervised Machine Fault Classification [J].
Jiang, Weiming ;
Zhang, Zhao ;
Li, Fanzhang ;
Zhang, Li ;
Zhao, Mingbo ;
Jin, Xiaohang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (01) :248-256
[9]  
Jiang Z., 2012, P IEEE C COMP VIS PA
[10]   Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition [J].
Jiang, Zhuolin ;
Lin, Zhe ;
Davis, Larry S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2651-2664