Homotopy self-equivalences of 4-manifolds with π1-free second homotopy

被引:0
作者
Pamuk, Mehmetcik [1 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
homotopy self-equivalences; 4-manifolds; pi(1)-free second homotopy; DUALITY;
D O I
10.2969/jmsj/06330801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the group of homotopy classes of homotopy self-equivalences of 4-manifolds with pi(1)-free second homotopy.
引用
收藏
页码:801 / 814
页数:14
相关论文
共 9 条
[1]   Poincare duality complexes in dimension four [J].
Baues, Hans Joachim ;
Bleile, Beatrice .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (04) :2355-2389
[2]   ON THE CLASSIFICATION OF TOPOLOGICAL 4-MANIFOLDS WITH FINITE FUNDAMENTAL GROUP [J].
HAMBLETON, I ;
KRECK, M .
MATHEMATISCHE ANNALEN, 1988, 280 (01) :85-104
[3]   Homotopy self-equivalences of 4-manifolds [J].
Hambleton, I ;
Kreck, M .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (01) :147-172
[4]   Surgery and duality [J].
Kreck, M .
ANNALS OF MATHEMATICS, 1999, 149 (03) :707-754
[5]   SELF-HOMOTOPY EQUIVALENCES OF GROUP COHOMOLOGY SPACES [J].
MOLLER, JM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 73 (01) :23-37
[6]  
Pamuk M., 2008, THESIS MCMASTER U
[7]   Four-manifolds with π1-free second homotopy [J].
Spaggiari, F .
MANUSCRIPTA MATHEMATICA, 2003, 111 (03) :303-320
[8]   ON THE SIGNATURE OF 4-MANIFOLDS WITH UNIVERSAL COVERING SPIN [J].
TEICHNER, P .
MATHEMATISCHE ANNALEN, 1993, 295 (04) :745-759
[9]   A CERTAIN EXACT SEQUENCE [J].
WHITEHEAD, JHC .
ANNALS OF MATHEMATICS, 1950, 52 (01) :51-110