Hamiltonian and long paths in bipartite graphs with connectivity

被引:1
作者
Gan, Zhiyong [1 ]
Xu, Yanping [2 ]
机构
[1] South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China
[2] South China Normal Univ, Student Affairs Dept, Guangzhou 510631, Peoples R China
关键词
Hamiltonian path; Long path; Hamiltonian-laceable; Bipartite graph; Connectivity; k-extendable; CYCLES;
D O I
10.1016/j.disc.2022.113083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gbe a graph,.(G) the order of G,.(G) the connectivity of Gand ka positive integer such that k <=(v(G) - 2)/2. Then Gis said to be k-extendableif it has a matching of size kand every matching of size kextends to a perfect matching of G. A Hamiltonian pathof a graph Gis a spanning path of G. A bipartite graph Gwith vertex sets V-1 and V-2 is defined to be Hamiltonian-laceableif such that | V-1| =|V-2| and for every pair of vertices p. V-1 and q epsilon V-2, there exists a Hamiltonian path in Gwith endpoints p and q, or | V-1| =| V-2| + 1and for every pair of vertices p, q epsilon V-1, p not equal q, there exists a Hamiltonian path in Gwith endpoints pand q. Let Gbe a bipartite graph with bipartition (X, Y). Define bn(G) to be a maximum integer such that 0 <= bn( G) < min{| X|, |Y|} and (1) for each non-empty subset S of X, if |S| <= | X| - bn(G), then |N(S)| >= |S| + bn(G), and if |X| - bn(G) < | S| <= | X|, then N( S) = Y; and (2) for each non-empty subset Sof Y, if |S| <= |Y| - bn(G), then |N(S)| >= |S| + bn(G), and if |Y| - bn(G) < | S| <= |Y|, then N(S) = X; and (3) bn(G) = 0if there is no non-negative integer satisfying (1) and (2). non-negative integer satisfying (1) and (2). Let Gbe a bipartite graph with bipartition ( X, Y) such that | X| =|Y| and bn(G) > 0. In this paper, we show that if v(G) <= 2 kappa(G) + 4bn( G) - 4, then Gis Hamiltonian-laceable; or if.(G) > 6bn(G) - 2, then for every pair of vertices x epsilon Xand y epsilon Y, there is an (x, y)-path Pin Gwith |V(P)| >= 6bn(G) - 2. We show some of its corollaries in k-extendable, bipartite graphs and a conjecture in k-extendable graphs.
引用
收藏
页数:18
相关论文
共 15 条
[1]  
Bondy J A, 2008, GRADUATE TEXTS MATH, V244
[2]  
Gan ZY, 2021, ARS COMBINATORIA, V154, P3
[3]   Hamiltonian and long cycles in bipartite graphs with connectivity [J].
Gan, Zhiyong ;
Xu, Yanping .
DISCRETE APPLIED MATHEMATICS, 2021, 301 :49-64
[4]   Hamiltonian Cycle Properties in k-Extendable Non-bipartite Graphs with High Connectivity [J].
Gan, Zhiyong ;
Lou, Dingjun ;
Xu, Yanping .
GRAPHS AND COMBINATORICS, 2020, 36 (04) :1043-1058
[5]  
Gan ZY, 2019, ARS COMBINATORIA, V144, P91
[6]   Advances on the Hamiltonian problem - A survey [J].
Gould, RJ .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :7-52
[7]   UPDATING THE HAMILTONIAN-PROBLEM - A SURVEY [J].
GOULD, RJ .
JOURNAL OF GRAPH THEORY, 1991, 15 (02) :121-157
[8]   Recent Advances on the Hamiltonian Problem: Survey III [J].
Gould, Ronald J. .
GRAPHS AND COMBINATORICS, 2014, 30 (01) :1-46
[9]  
Li YP, 2018, ARS COMBINATORIA, V139, P3
[10]   Connectivity of k-extendable graphs with large k [J].
Lou, DJ ;
Yu, QL .
DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) :55-61