NODAL SETS AND GROWTH EXPONENTS OF LAPLACE EIGENFUNCTIONS ON SURFACES

被引:3
作者
Roy-Fortin, Guillaume
机构
[1] Département de mathématiques et de statistique, Université de Montréal, CP 6128 succ., Centre-Ville, Montréal, H3C 3J7, QC
来源
ANALYSIS & PDE | 2015年 / 8卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
spectral geometry; Laplace eigenfunctions; nodal sets; growth of eigenfunctions; ELLIPTIC-EQUATIONS;
D O I
10.2140/apde.2015.8.223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a result, announced by F. Nazarov, L. Polterovich and M. Sodin, that exhibits a relation between the average local growth of a Laplace eigenfunction on a closed surface and the global size of its nodal set. More precisely, we provide a lower and an upper bound to the Hausdorff measure of the nodal set in terms of the expected value of the growth exponent of an eigenfunction on disks of wavelength-like radius. Combined with Yau's conjecture, the result implies that the average local growth of an eigenfunction on such disks is bounded by constants in the semiclassical limit. We also obtain results that link the size of the nodal set to the growth of solutions of planar Schrodinger equations with small potential.
引用
收藏
页码:223 / 255
页数:33
相关论文
共 24 条
[1]  
Ahlfors L. V., 1966, MATH STUDIES, V10
[3]   NODES OF EIGEN-FUNCTIONS OF LAPLACE-BELTRAMI OPERATOR [J].
BRUNING, J .
MATHEMATISCHE ZEITSCHRIFT, 1978, 158 (01) :15-21
[4]   EIGENFUNCTIONS AND NODAL SETS [J].
CHENG, SY .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (01) :43-55
[5]  
DONG RT, 1992, J DIFFER GEOM, V36, P493
[6]   NODAL SETS OF EIGENFUNCTIONS ON RIEMANNIAN-MANIFOLDS [J].
DONNELLY, H ;
FEFFERMAN, C .
INVENTIONES MATHEMATICAE, 1988, 93 (01) :161-183
[7]  
Fefferman C, 1990, J AM MATH SOC, V3, P333, DOI 10.1090/S0894-0347-1990-1035413-2
[8]  
Gelfond A., 1934, TRAV I STEKLOFF, V5, P149
[9]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF, V224
[10]  
Han Q., 2007, PREPRINT