MSL: A Measure to Evaluate Three-dimensional Patterns in Gene Expression Data

被引:17
作者
Gutierrez-Aviles, David [1 ]
Rubio-Escudero, Cristina [1 ]
机构
[1] Univ Seville, Dept Comp Sci, Seville, Spain
来源
EVOLUTIONARY BIOINFORMATICS | 2015年 / 11卷
关键词
triclustering; angular comparison; genetic algorithms; fitness function; microarrays; time series; ALGORITHM; TOOL;
D O I
10.4137/EBO.S25822
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microarray technology is highly used in biological research environments due to its ability to monitor the RNA concentration levels. The analysis of the data generated represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior. Biclustering relaxes the constraints for grouping, allowing genes to be evaluated only under a subset of the conditions. Triclustering appears for the analysis of longitudinal experiments in which the genes are evaluated under certain conditions at several time points. These triclusters provide hidden information in the form of behavior patterns from temporal experiments with microarrays relating subsets of genes, experimental conditions, and time points. We present an evaluation measure for triclusters called Multi Slope Measure, based on the similarity among the angles of the slopes formed by each profile formed by the genes, conditions, and times of the tricluster.
引用
收藏
页码:121 / 135
页数:15
相关论文
共 50 条
[1]   The "Gene Cube": A Novel Approach to Three-dimensional Clustering of Gene Expression Data [J].
Lambrou, George I. ;
Sdraka, Maria ;
Koutsouris, Dimitrios .
CURRENT BIOINFORMATICS, 2019, 14 (08) :721-727
[2]   Three-dimensional data acquisition by digital correlation of projected speckle patterns [J].
Dekiff, M. ;
Berssenbruegge, P. ;
Kemper, B. ;
Denz, C. ;
Dirksen, D. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 99 (03) :449-456
[3]   Mining 3D Patterns from Gene Expression Temporal Data: A New Tricluster Evaluation Measure [J].
Gutierrez-Aviles, David ;
Rubio-Escudero, Cristina .
SCIENTIFIC WORLD JOURNAL, 2014,
[4]   A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture [J].
Melgar-Garcia, Laura ;
Gutierrez-Aviles, David ;
Godinho, Maria Teresa ;
Espada, Rita ;
Brito, Isabel Sofia ;
Martinez-alvarez, Francisco ;
Troncoso, Alicia ;
Rubio-Escudero, Cristina .
NEUROCOMPUTING, 2022, 500 :268-278
[5]   Efficient Two Dimensional Clustering of Microarray Gene Expression Data By Means Of Hybrid Similarity Measure [J].
Priscilla, R. ;
Swamynathan, S. .
PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI'12), 2012, :1047-1053
[6]   Biclustering of Linear Patterns In Gene Expression Data [J].
Gao, Qinghui ;
Ho, Christine ;
Jia, Yingmin ;
Li, Jingyi Jessica ;
Huang, Haiyan .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (06) :619-631
[7]   Challenges for visualizing three-dimensional data in genomic browsers [J].
Goodstadt, Mike ;
Marti-Renom, Marc A. .
FEBS LETTERS, 2017, 591 (17) :2505-2519
[8]   Three-dimensional conjugate gradient inversion of CSAMT data [J].
Lin Chang-Hong ;
Tan Han-Dong ;
Shu Qing ;
Tong Tuo ;
Tan Jia-Yan .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2012, 55 (11) :3829-3838
[9]   Gene Delivery in Three-Dimensional Cell Cultures by Superparamagnetic Nanoparticles [J].
Zhang, Haiyuan ;
Lee, Moo-Yeal ;
Hogg, Michael G. ;
Dordick, Jonathan S. ;
Sharfstein, Susan T. .
ACS NANO, 2010, 4 (08) :4733-4743
[10]   Reversible Data Hiding in Encrypted Three-Dimensional Mesh Models [J].
Jiang, Ruiqi ;
Zhou, Hang ;
Zhang, Weiming ;
Yu, Nenghai .
IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (01) :55-67