Integrated analysis of multimodal single-cell data with structural similarity

被引:66
作者
Cao, Yingxin [1 ,5 ,6 ]
Fu, Laiyi [1 ,2 ]
Wu, Jie [3 ]
Peng, Qinke [2 ]
Nie, Qing [4 ,5 ,6 ]
Zhang, Jing [1 ]
Xie, Xiaohui [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
[2] Xi An Jiao Tong Univ, Syst Engn Inst, Sch Elect & Informat Engn, Xian 710049, Shannxi, Peoples R China
[3] Univ Calif Irvine, Dept Biol Chem, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Ctr Complex Biol Syst, Irvine, CA 92697 USA
[6] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
CHROMATIN; RNA;
D O I
10.1093/nar/gkac781
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multimodal single-cell sequencing technologies provide unprecedented information on cellular heterogeneity from multiple layers of genomic readouts. However, joint analysis of two modalities without properly handling the noise often leads to overfitting of one modality by the other and worse clustering results than vanilla single-modality analysis. How to efficiently utilize the extra information from single cell multi-omics to delineate cell states and identify meaningful signal remains as a significant computational challenge. In this work, we propose a deep learning framework, named SAILERX, for efficient, robust, and flexible analysis of multi-modal single-cell data. SAILERX consists of a variational autoencoder with invariant representation learning to correct technical noises from sequencing process, and a multimodal data alignment mechanism to integrate information from different modalities. Instead of performing hard alignment by projecting both modalities to a shared latent space, SAILERX encourages the local structures of two modalities measured by pairwise similarities to be similar. This strategy is more robust against overfitting of noises, which facilitates various downstream analysis such as clustering, imputation, and marker gene detection. Furthermore, the invariant representation learning part enables SAILERX to perform integrative analysis on both multi- and single-modal datasets, making it an applicable and scalable tool for more general scenarios.
引用
收藏
页数:13
相关论文
共 53 条
[1]   Computational principles and challenges in single-cell data integration [J].
Argelaguet, Ricard ;
Cuomo, Anna S. E. ;
Stegle, Oliver ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2021, 39 (10) :1202-1215
[2]   Transcriptome profiling of human FoxP3+ regulatory T cells [J].
Bhairavabhotla, Ravikiran ;
Kim, Yong C. ;
Glass, Deborah D. ;
Escobar, Thelma M. ;
Patel, Mira C. ;
Zahr, Rami ;
Nguyen, Cuong K. ;
Kilaru, Gokhul K. ;
Muljo, Stefan A. ;
Shevach, Ethan M. .
HUMAN IMMUNOLOGY, 2016, 77 (02) :201-213
[3]   A human cell atlas of fetal gene expression [J].
Cao, Junyue ;
O'Day, Diana R. ;
Pliner, Hannah A. ;
Kingsley, Paul D. ;
Deng, Mei ;
Daza, Riza M. ;
Zager, Michael A. ;
Aldinger, Kimberly A. ;
Blecher-Gonen, Ronnie ;
Zhang, Fan ;
Spielmann, Malte ;
Palis, James ;
Doherty, Dan ;
Steemers, Frank J. ;
Glass, Ian A. ;
Trapnell, Cole ;
Shendure, Jay .
SCIENCE, 2020, 370 (6518) :808-+
[4]   Unsupervised topological alignment for single-cell multi-omics integration [J].
Cao, Kai ;
Bai, Xiangqi ;
Hong, Yiguang ;
Wan, Lin .
BIOINFORMATICS, 2020, 36 :48-56
[5]   SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration [J].
Cao, Yingxin ;
Fu, Laiyi ;
Wu, Jie ;
Peng, Qinke ;
Nie, Qing ;
Zhang, Jing ;
Xie, Xiaohui .
BIOINFORMATICS, 2021, 37 :I317-I326
[6]   The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders [J].
Chen, Chao ;
Meng, Qingtuan ;
Xia, Yan ;
Ding, Chaodong ;
Wang, Le ;
Dai, Rujia ;
Cheng, Lijun ;
Gunaratne, Preethi ;
Gibbs, Richard A. ;
Min, Shishi ;
Coarfa, Cristian ;
Reid, Jeffrey G. ;
Zhang, Chunling ;
Jiao, Chuan ;
Jiang, Yi ;
Giase, Gina ;
Thomas, Amber ;
Fitzgerald, Dominic ;
Brunetti, Tonya ;
Shieh, Annie ;
Xia, Cuihua ;
Wang, Yongjun ;
Wang, Yunpeng ;
Badner, Judith A. ;
Gershon, Elliot S. ;
White, Kevin P. ;
Liu, Chunyu .
SCIENCE TRANSLATIONAL MEDICINE, 2018, 10 (472)
[7]   High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell [J].
Chen, Song ;
Lake, Blue B. ;
Zhang, Kun .
NATURE BIOTECHNOLOGY, 2019, 37 (12) :1452-+
[8]   Human dendritic cell subsets: an update [J].
Collin, Matthew ;
Bigley, Venetia .
IMMUNOLOGY, 2018, 154 (01) :3-20
[9]   A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility [J].
Cusanovich, Darren A. ;
Hill, Andrew J. ;
Aghamirzaie, Delasa ;
Daza, Riza M. ;
Pliner, Hannah A. ;
Berletch, Joel B. ;
Filippova, Galina N. ;
Huang, Xingfan ;
Christiansen, Lena ;
DeWitt, William S. ;
Lee, Choli ;
Regalado, Samuel G. ;
Read, David F. ;
Steemers, Frank J. ;
Disteche, Christine M. ;
Trapnell, Cole ;
Shendure, Jay .
CELL, 2018, 174 (05) :1309-+
[10]  
Dijk Davidvan., 2017, BioRxiv, P111591, DOI [10.1101/111591, DOI 10.1101/111591]