HOLOGRAPHIC ALGORITHM WITH MATCHGATES IS UNIVERSAL FOR PLANAR #CSP OVER BOOLEAN DOMAIN

被引:7
作者
Cai, Jin-Yi [1 ]
Fu, Zhiguo [2 ]
机构
[1] Univ Wisconsin, Comp Sci, Madison, WI 53706 USA
[2] Northeast Normal Univ, Coll Comp Sci & Informat Technol, Changchun 130117, Jilin, Peoples R China
关键词
#CSP; holographic algorithms; matchgates; COMPLEXITY; DICHOTOMY; STATISTICS; THEOREM;
D O I
10.1137/17M1131672
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a complexity classification theorem that classifies all counting constraint satisfaction problems (#CSP) over Boolean variables into exactly three classes: (1) polynomial-time solvable; (2) #P-hard for general instances but solvable in polynomial time over planar structures; and (3) #P-hard over planar structures. The classification applies to all finite sets of local, not necessarily symmetric, constraint functions on Boolean variables that take algebraic complex values. It is shown that Valiant's holographic algorithm with matchgates is a universal strategy for all problems in class (2).
引用
收藏
页数:102
相关论文
共 49 条
[1]  
Baxter Rodney J, 2007, Exactly solved models in statistical mechanics
[2]   The complexity of weighted Boolean #CSP with mixed signs [J].
Bulatov, Andrei ;
Dyer, Martin ;
Goldberg, Leslie Ann ;
Jalsenius, Markus ;
Richerby, David .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) :3949-3961
[3]   Towards a dichotomy theorem for the counting constraint satisfaction problem [J].
Bulatov, Andrei A. ;
Dalmau, Victor .
INFORMATION AND COMPUTATION, 2007, 205 (05) :651-678
[4]  
Cai J.-Y., 2017, COMPLEXITY DICHOTOMI, V1, DOI DOI 10.1017/9781107477063
[5]   The complexity of counting edge colorings and a dichotomy for some higher domain Holant problems [J].
Cai, Jin-Yi ;
Guo, Heng ;
Williams, Tyson .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2016, 3
[6]   HOLOGRAPHIC ALGORITHMS WITH MATCHGATES CAPTURE PRECISELY TRACTABLE PLANAR #CSP [J].
Cai, Jin-Yi ;
Lu, Pinyan ;
Xia, Mingji .
SIAM JOURNAL ON COMPUTING, 2017, 46 (03) :853-889
[7]   A COMPLETE DICHOTOMY RISES FROM THE CAPTURE OF VANISHING SIGNATURES [J].
Cai, Jin-Yi ;
Guo, Heng ;
Williams, Tyson .
SIAM JOURNAL ON COMPUTING, 2016, 45 (05) :1671-1728
[8]   A Holant Dichotomy: Is the FKT Algorithm Universal? [J].
Cai, Jin-Yi ;
Fu, Zhiguo ;
Guo, Heng ;
Williams, Tyson .
2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, :1259-1276
[9]  
Cai JY, 2013, PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), P1278
[10]   A collapse theorem for holographic algorithms with matchgates on domain size at most 4 [J].
Cai, Jin-Yi ;
Fu, Zhiguo .
INFORMATION AND COMPUTATION, 2014, 239 :149-169