Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays

被引:30
作者
Ke, Liang [1 ]
机构
[1] Zhejiang Ind Polytech Coll, Sch Mech Engn, Shaoxing 312000, Zhejiang, Peoples R China
关键词
Fractional-order; Inertial neural networks; Variable substitution; Mittag-Leffler stability; Asymptotical w-periodicity; DIFFERENTIAL-EQUATIONS; SYNCHRONIZATION; STABILIZATION; FAMILY;
D O I
10.1016/j.neucom.2021.08.121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the stability for a class fractional-order inertial neural networks with time-delay are investigated. Moreover, some sufficient conditions for the Mittag-Leffler stability and the asymptotical omega-periodicity are obtained, by the appropriate transformation, using the property of the Riemann-Liouville fractional integral and derivative. In the end, results of the theoretical derivation are verified by virtue of two numerical simulation examples. (C) 2021 The Author. Published by Elsevier B.V.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
[31]   Mittag-Leffler Stability of Fractional-Order Nonlinear Differential Systems With State-Dependent Delays [J].
Li, Hui ;
Kao, Yonggui ;
Chen, Yangquan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (05) :2108-2116
[32]   Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with generalized piecewise constant argument [J].
Wang, Jingjing ;
Zhu, Song ;
Liu, Xiaoyang ;
Wen, Shiping .
NEURAL NETWORKS, 2023, 162 :175-185
[33]   Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks [J].
Udhayakumar, K. ;
Rakkiyappan, R. ;
Cao, Jin-de ;
Tan, Xue-gang .
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (02) :234-246
[34]   Global Mittag-Leffler stability for fractional-order quaternion-valued neural networks with piecewise constant arguments and impulses [J].
Chen, Yanxi ;
Song, Qiankun ;
Zhao, Zhenjiang ;
Liu, Yurong ;
Alsaadi, Fuad E. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (08) :1756-1768
[35]   Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks [J].
Wu, Ailong ;
Zeng, Zhigang ;
Song, Xingguo .
NEUROCOMPUTING, 2016, 177 :489-496
[36]   Mittag-Leffler stability of fractional-order Lorenz and Lorenz-family systems [J].
Ke Yunquan ;
Miao Chunfang .
NONLINEAR DYNAMICS, 2016, 83 (03) :1237-1246
[37]   Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field [J].
Pratap, Anbalagan ;
Raja, Ramachandran ;
Alzabut, Jehad ;
Cao, Jinde ;
Rajchakit, Grienggrai ;
Huang, Chuangxia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) :6223-6253
[38]   Further results on Mittag-Leffler synchronization of fractional-order coupled neural networks [J].
Fengxian Wang ;
Fang Wang ;
Xinge Liu .
Advances in Difference Equations, 2021
[39]   Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks [J].
Fan, Yingjie ;
Huang, Xia ;
Wang, Zhen ;
Xia, Jianwei ;
Li, Yuxia .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[40]   New integral Mittag-Leffler asymptotic stability and stabilization of fractional-order time-varying systems [J].
Lenka, Bichitra Kumar ;
Upadhyay, Ranjit Kumar .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2025, 50 (03)