Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays

被引:29
|
作者
Ke, Liang [1 ]
机构
[1] Zhejiang Ind Polytech Coll, Sch Mech Engn, Shaoxing 312000, Zhejiang, Peoples R China
关键词
Fractional-order; Inertial neural networks; Variable substitution; Mittag-Leffler stability; Asymptotical w-periodicity; DIFFERENTIAL-EQUATIONS; SYNCHRONIZATION; STABILIZATION; FAMILY;
D O I
10.1016/j.neucom.2021.08.121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the stability for a class fractional-order inertial neural networks with time-delay are investigated. Moreover, some sufficient conditions for the Mittag-Leffler stability and the asymptotical omega-periodicity are obtained, by the appropriate transformation, using the property of the Riemann-Liouville fractional integral and derivative. In the end, results of the theoretical derivation are verified by virtue of two numerical simulation examples. (C) 2021 The Author. Published by Elsevier B.V.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays
    Ke, Liang
    Neurocomputing, 2021, 465 : 53 - 62
  • [2] Mittag-Leffler Stability and Global Asymptotically ω-Periodicity of Fractional-Order BAM Neural Networks with Time-Varying Delays
    Zhou, Fengyan
    Ma, Chengrong
    NEURAL PROCESSING LETTERS, 2018, 47 (01) : 71 - 98
  • [3] Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractional-order neural networks
    Wan, Liguang
    Wu, Ailong
    NEUROCOMPUTING, 2018, 315 : 272 - 282
  • [4] Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks
    Wu, Ailong
    Zeng, Zhigang
    NEURAL NETWORKS, 2016, 74 : 73 - 84
  • [5] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [6] The Boundedness and the Global Mittag-Leffler Synchronization of Fractional-Order Inertial Cohen–Grossberg Neural Networks with Time Delays
    Zhiying Li
    Yuehong Zhang
    Neural Processing Letters, 2022, 54 : 597 - 611
  • [7] Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay
    Wang, Jingfeng
    Bai, Chuanzhi
    AIMS MATHEMATICS, 2023, 8 (10): : 22538 - 22552
  • [8] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [9] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288
  • [10] Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
    Rifhat, Ramziya
    Muhammadhaji, Ahmadjan
    Teng, Zhidong
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 205 - 213