Electromagnetic Land Surface Classification Through Integration of Optical and Radar Remote Sensing Data

被引:2
作者
Baek, Jin [1 ]
Kim, Jeong Woo [1 ]
Lim, Gye Jae [2 ]
Lee, Dong-Cheon [3 ]
机构
[1] Univ Calgary, Dept Geomat, Calgary, AB T2N 1N4, Canada
[2] Kwandong Univ, Dept Informat & Commun Technol Engn, Kangnung 210701, South Korea
[3] Sejong Univ, Dept Geoinformat Engn, Seoul 143747, South Korea
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2011年 / 49卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR); Alberta; dielectric constant; electromagnetic (EM) property; land classification; Landsat-5 Thematic Mapper (TM); QuickBird; DIELECTRIC-CONSTANT; SOIL-MOISTURE; INVERSION; MODEL; TM;
D O I
10.1109/TGRS.2010.2096513
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a nonhierarchical electromagnetic (EM) land surface classification method through the integration of satellite multispectral high-resolution optical and polarized radar images of central Alberta near the Saskatchewan border. We implement a conventional supervised land surface classification method and a principal component analysis to a QuickBird image. The EM properties are then assigned to the classified surfaces to produce hierarchical EM land classification maps. To further classify a hierarchical EM surface (i.e., dielectric constant), we calculate the root-mean-square surface height with a Shuttle Radar Topography Mission 3-arc-second digital elevation model and the temperatures from a thermal band of a Landsat-5 Thematic Mapper image. We also calculate the backscattering coefficients from the Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar image. Using these estimated values, we calculate the intrinsic weighting factors with the Dubois (1995) model for less vegetated land areas and the Ulaby (1986) model for open water areas. By applying these weighting factors to the hierarchical EM surface, we generate a nonhierarchical higher resolution EM surface map of the study area.
引用
收藏
页码:1214 / 1222
页数:9
相关论文
共 30 条
  • [1] MAPPING MICRO-URBAN HEAT ISLANDS USING LANDSAT TM AND A GIS
    ANIELLO, C
    MORGAN, K
    BUSBEY, A
    NEWLAND, L
    [J]. COMPUTERS & GEOSCIENCES, 1995, 21 (08) : 965 - +
  • [2] ANIELLO CA, 1993, THESIS TEXAS CHRISTI
  • [3] [Anonymous], 1986, THEORY APPL
  • [4] Revised Landsat-5 thematic mapper radiometric calibration
    Chander, Gyanesh
    Markham, Brian L.
    Barsi, Julia A.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (03) : 490 - 494
  • [5] Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
    Chander, Gyanesh
    Markham, Brian L.
    Helder, Dennis L.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (05) : 893 - 903
  • [6] An entropy based classification scheme for land applications of polarimetric SAR
    Cloude, SR
    Pottier, E
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01): : 68 - 78
  • [7] *DIG GLOB, 2003, QUICKBIRD IM PROD PR
  • [8] DOTTLING MW, 1999, IEEE GEOSCI REMO MAR, P6
  • [9] MEASURING SOIL-MOISTURE WITH IMAGING RADARS
    DUBOIS, PC
    VANZYL, J
    ENGMAN, T
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (04): : 915 - 926
  • [10] ERDAS Inc, 2009, ER MAPP US GUID