Fast and Accurate Single Image Super-Resolution via Information Distillation Network

被引:769
作者
Hui, Zheng [1 ]
Wang, Xiumei [1 ]
Gao, Xinbo [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian, Shaanxi, Peoples R China
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR.2018.00082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep convolutional neural networks (CNNs) have been demonstrated remarkable progress on single image super-resolution. However, as the depth and width of the networks increase, CNN-based super-resolution methods have been faced with the challenges of computational complexity and memory consumption in practice. In order to solve the above questions, we propose a deep but compact convolutional network to directly reconstruct the high resolution image from the original low resolution image. In general, the proposed model consists of three parts, which are feature extraction block, stacked information distillation blocks and reconstruction block respectively. By combining an enhancement unit with a compression unit into a distillation block, the local long and short-path features can be effectively extracted. Specifically, the proposed enhancement unit mixes together two different types of features and the compression unit distills more useful information for the sequential blocks. In addition, the proposed network has the advantage of fast execution due to the comparatively few numbers of filters per layer and the use of group convolution. Experimental results demonstrate that the proposed method is superior to the state-of-the-art methods, especially in terms of time performance. Code is available at https://github.com/Zheng222/IDN-Caffe.
引用
收藏
页码:723 / 731
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 2001, 8 IEEE INT C COMPUTE, DOI [DOI 10.1109/ICCV.2001.937655, 10.1109/ICCV.2001.937655]
[2]  
[Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.182
[3]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[4]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[5]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[6]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[7]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[8]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[9]   Example-based super-resolution [J].
Freeman, WT ;
Jones, TR ;
Pasztor, EC .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2002, 22 (02) :56-65
[10]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]