Computational methods for the integrative analysis of single-cell data

被引:50
作者
Forcato, Mattia [1 ]
Romano, Oriana [1 ]
Bicciato, Silvio [2 ]
机构
[1] Univ Modena & Reggio Emilia, Mol Biol & Bioinformat, Modena, Italy
[2] Univ Modena & Reggio Emilia, Ind Bioengn, Modena, Italy
关键词
bioinformatics; single cell genomics; data integration; RNA-SEQ DATA; MULTI-OMICS; CONTROL GENES; EXPRESSION;
D O I
10.1093/bib/bbaa042
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in single-cell technologies are providing exciting opportunities for dissecting tissue heterogeneity and investigating cell identity, fate and function. This is a pristine, exploding field that is flooding biologists with a new wave of data, each with its own specificities in terms of complexity and information content. The integrative analysis of genomic data, collected at different molecular layers from diverse cell populations, holds promise to address the full-scale complexity of biological systems. However, the combination of different single-cell genomic signals is computationally challenging, as these data are intrinsically heterogeneous for experimental, technical and biological reasons. Here, we describe the computational methods for the integrative analysis of single-cell genomic data, with a focus on the integration of single-cell RNA sequencing datasets and on the joint analysis of multimodal signals from individual cells.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 73 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]   High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin [J].
Achim, Kaia ;
Pettit, Jean-Baptiste ;
Saraiva, Luis R. ;
Gavriouchkina, Daria ;
Larsson, Tomas ;
Arendt, Detlev ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :503-U215
[3]   scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data [J].
Alquicira-Hernandez, Jose ;
Sathe, Anuja ;
Ji, Hanlee P. ;
Quan Nguyen ;
Powell, Joseph E. .
GENOME BIOLOGY, 2019, 20 (01)
[4]   Orchestrating single-cell analysis with Bioconductor [J].
Amezquita, Robert A. ;
Lun, Aaron T. L. ;
Becht, Etienne ;
Carey, Vince J. ;
Carpp, Lindsay N. ;
Geistlinger, Ludwig ;
Marini, Federico ;
Rue-Albrecht, Kevin ;
Risso, Davide ;
Soneson, Charlotte ;
Waldron, Levi ;
Pages, Herve ;
Smith, Mike L. ;
Huber, Wolfgang ;
Morgan, Martin ;
Gottardo, Raphael ;
Hicks, Stephanie C. .
NATURE METHODS, 2020, 17 (02) :137-145
[5]   Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J].
Angermueller, Christof ;
Clark, Stephen J. ;
Lee, Heather J. ;
Macaulay, Iain C. ;
Teng, Mabel J. ;
Hu, Tim Xiaoming ;
Krueger, Felix ;
Smallwood, Sebastien A. ;
Ponting, Chris P. ;
Voet, Thierry ;
Kelsey, Gavin ;
Stegle, Oliver ;
Reik, Wolf .
NATURE METHODS, 2016, 13 (03) :229-+
[6]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[7]   Joint analysis of heterogeneous single-cell RNA-seq dataset collections [J].
Barkas, Nikolas ;
Petukhov, Viktor ;
Nikolaeva, Daria ;
Lozinsky, Yaroslav ;
Demharter, Samuel ;
Khodosevich, Konstantin ;
Kharchenko, Peter V. .
NATURE METHODS, 2019, 16 (08) :695-+
[8]  
Batada, 470203 BIORXIV
[9]   Multi-Omics of Single Cells: Strategies and Applications [J].
Bock, Christoph ;
Farlik, Matthias ;
Sheffield, Nathan C. .
TRENDS IN BIOTECHNOLOGY, 2016, 34 (08) :605-608
[10]  
Bredikhin, 837104 BIORXIV