Scalar oscillatory integrals in smooth spaces of homogeneous type

被引:5
作者
Gressman, Philip T. [1 ]
机构
[1] David Rittenhouse Lab, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Oscillatory integrals; spaces of homogeneous type; stationary phase; FOURIER-TRANSFORMS; SINGULARITIES; RESOLUTION; STABILITY; VAN; HYPERSURFACES; DIMENSIONS; OPERATORS; THEOREM; CORPUT;
D O I
10.4171/RMI/831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a generalization of the notion of spaces of homogeneous type, inspired by recent work of Street (2011) on the multi-parameter Carnot-Caratheodory geometry, which endows such spaces with differential structure. The setting allows one to formulate estimates for scalar oscillatory integrals on these spaces which are uniform and respect the underlying geometry of both the space and the phase function. As a corollary we obtain a generalization of a theorem of Bruna, Nagel, and Wainger (1988) on the asymptotic behavior of scalar oscillatory integrals with smooth, convex phase of finite type.
引用
收藏
页码:215 / 244
页数:30
相关论文
共 25 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]   CONVEX HYPERSURFACES AND FOURIER-TRANSFORMS [J].
BRUNA, J ;
NAGEL, A ;
WAINGER, S .
ANNALS OF MATHEMATICS, 1988, 127 (02) :333-365
[3]   Multidimensional van der Corput and sublevel set estimates [J].
Carbery, A ;
Christ, M ;
Wright, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :981-1015
[4]  
Carbery A, 2002, PUBL MAT, P13
[5]  
Carbery A, 2010, CONTEMP MATH, V505, P97
[6]   A MULTI-DIMENSIONAL RESOLUTION OF SINGULARITIES WITH APPLICATIONS TO ANALYSIS [J].
Collins, Tristan C. ;
Greenleaf, Allan ;
Pramanik, Malabika .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (05) :1179-1252
[7]   OSCILLATORY INTEGRALS AND FOURIER-TRANSFORMS OF SURFACE CARRIED MEASURES [J].
COWLING, M ;
MAUCERI, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (01) :53-68
[8]   An elementary coordinate-dependent local resolution of singularities and applications [J].
Greenblatt, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) :1957-1994
[9]   Resolution of singularities in two dimensions and the stability of integrals [J].
Greenblatt, Michael .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1772-1802
[10]   UNIFORM GEOMETRIC ESTIMATES OF SUBLEVEL SETS [J].
Gressman, Philip T. .
JOURNAL D ANALYSE MATHEMATIQUE, 2011, 115 :251-272