A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: A DFT plus NBO analysis

被引:53
作者
Abbasi, Amirali [1 ,2 ,3 ]
Sardroodi, Jaber Jahanbin [1 ,2 ,3 ]
机构
[1] Azarbaijan Shahid Madani Univ, Mol Simulat Lab, Tabriz, Iran
[2] Azarbaijan Shahid Madani Univ, Computat Nanomat Res Grp, Tabriz, Iran
[3] Azarbaijan Shahid Madani Univ, Fac Basic Sci, Dept Chem, Tabriz, Iran
关键词
Density functional theory; NO2; O-3; ZnO nanoparticle; Adsorption; Molecular orbital; ZINC-OXIDE NANOSTRUCTURES; SENSING PROPERTIES; OZONE; NO2; ADSORPTION; DYNAMICS; SENSOR; PHASE; NANOPARTICLES; INSIGHTS;
D O I
10.1016/j.susc.2017.10.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We presented a density functional theory study of the adsorption of O-3 and NO2 molecules on ZnO nanoparticles. Various adsorption geometries of O-3 and NO2 over the nanoparticles were considered. For both O-3 and NO2 adsorption systems, it was found that the adsorption on the N-doped nanoparticle is more favorable in energy than that on the pristine one. Therefore, the N-doped ZnO has a better efficiency to be utilized as O-3 and NO2 detection device. For all cases, the binding sites were located on the zinc atoms of the nanoparticle. The charge analysis based on natural bond orbital (NBO) analysis indicates that charge was transferred from the surface to the adsorbed molecule. The projected density of states of the interacting atoms represent the formation of chemical bonds at the interface region. Molecular orbitals of the adsorption systems indicate that the HOMOs were mainly localized on the adsorbed O-3 and NO2 molecules, whereas the electronic densities in the LUMOs were dominant at the ZnO nanocrystal surface. By examining the distribution of spin densities, we found that the magnetization was mainly located over the adsorbed molecules. For NO2 adsorbate, we found that the symmetric and asymmetric stretches were shifted to a lower frequency. The bending stretch mode was shifted to the higher frequency. Our DFT results thus provide a theoretical basis for why the adsorption of O-3 and NO2 molecules on the N-doped ZnO nanoparticles may increase, giving rise to design and development of innovative and highly efficient sensor devices for O-3 and NO2 recognition. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 163
页数:14
相关论文
共 72 条
[1]   Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: Insights from density functional theory calculations [J].
Abbasi, Amirali ;
Sardroodi, Jaber Jahanbin .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2016, 1095 :15-28
[2]   N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations [J].
Abbasi, Amirali ;
Sardroodi, Jaber Jahanbin .
ENVIRONMENTAL SCIENCE-NANO, 2016, 3 (05) :1153-1164
[3]   Synthesis burger/donut like V and W doped ZnO and study of their optical and gas sensing properties [J].
Adhyapak, Parag V. ;
Meshram, Satish P. ;
Pawar, Aarti A. ;
Amalnerkar, Dinesh P. ;
Mulik, Uttam P. ;
Mulla, Imtiaz S. .
CERAMICS INTERNATIONAL, 2014, 40 (08) :12105-12115
[4]   NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives [J].
Afzal, Adeel ;
Cioffi, Nicola ;
Sabbatini, Luigia ;
Torsi, Luisa .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 171 :25-42
[5]   Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J].
Barnard, AS ;
Curtiss, LA .
NANO LETTERS, 2005, 5 (07) :1261-1266
[6]   Modeling the morphology and phase stability of TiO2 nanocrystals in water [J].
Barnard, AS ;
Zapol, P ;
Curtiss, LA .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (01) :107-116
[7]   The relationship of oxygen binding and peroxide sites and the fluorescent properties of zinc oxide semiconductor nanocrystals [J].
Bohle, D. Scott ;
Spina, Carla J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (41) :12380-+
[8]   Adsorption of NO2 on Oxygen Deficient ZnO(2(1)over-bar(1)over-bar0) for Gas Sensing Applications: A DFT Study [J].
Breedon, M. ;
Spencer, M. J. S. ;
Yarovsky, I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16603-16610
[9]   An easy method of preparing ozone gas sensors based on ZnO nanorods [J].
Catto, Ariadne C. ;
da Silva, Luis F. ;
Ribeiro, Caue ;
Bernardini, Sandrine ;
Aguir, Khalifa ;
Longo, Elson ;
Mastelaro, Valmor. R. .
RSC ADVANCES, 2015, 5 (25) :19528-19533
[10]   Experimental and first-principles study of guanine adsorption on ZnO clusters [J].
Chandraboss, V. L. ;
Karthikeyan, B. ;
Senthilvelan, S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (42) :23461-23475