Off-axis photoelasticity by anisotropic molecular deformation of uniaxially aligned cellulose nanofiber films

被引:1
作者
Uetani, Kojiro [1 ]
Uto, Takuya [2 ]
机构
[1] Osaka Univ, SANKEN Inst Sci & Ind Res, Mihogaoka 8-1, Osaka, Ibaraki 5670047, Japan
[2] Univ Miyazaki, Org Promot Tenure Track, Nishi 1-1 Gakuen Kibanadai, Miyazaki 8892192, Japan
来源
CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS | 2021年 / 2卷
基金
日本学术振兴会;
关键词
Birefringence; Retardation; Cellulose nanofiber; Off-axis; DFT calculation; HYDROGEN-BONDING SYSTEM; CHAIN SHEET MODELS; SYNCHROTRON X-RAY; INTRINSIC BIREFRINGENCE; DYNAMIC BIREFRINGENCE; AMORPHOUS POLYMERS; CRYSTAL-STRUCTURE; VISCOELASTICITY; NANOCOMPOSITE; DISPERSION;
D O I
10.1016/j.carpta.2021.100166
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We report the angle dependence of the photoelasticity for unidirectionally aligned films of bacterial cellulose nanofibers (CNFs) by applying the off-axis stress at 0 degrees-90 degrees with respect to the CNF orientation. The photoelastic coefficient was positive when the stress direction was close to the CNF axial direction, and it was negative when the stress was applied close to the lateral direction. The positive to negative photoelasticity was also observed in the off-axis photoelasticity of the cellophane film and in the density functional theory (DFT) calculations for the stretching between two atoms in the cellobiose model. On the other hand, unlike the cellophane film, the CNF film showed a positively and negatively asymmetric photoelasticity of 5 to 10 TPa 1, reflecting the anisotropy of the crystal modulus tensor. We found that the presence or absence of cellulose crystals controls the anisotropy of photoelasticity by constraining the molecular deformation.
引用
收藏
页数:8
相关论文
共 62 条
  • [1] Modern photoelasticity for residual stress measurement in glass
    Aben, H.
    Anton, J.
    Errapart, A.
    [J]. STRAIN, 2008, 44 (01): : 40 - 48
  • [2] Mueller matrix polarimetry with four photoelastic modulators: theory and calibration
    Arteaga, Oriol
    Freudenthal, John
    Wang, Baoliang
    Kahr, Bart
    [J]. APPLIED OPTICS, 2012, 51 (28) : 6805 - 6817
  • [3] All-nanocellulose nonvolatile resistive memory
    Celano, Umberto
    Nagashima, Kazuki
    Koga, Hirotaka
    Nogi, Masaya
    Zhuge, Fuwei
    Meng, Gang
    He, Yong
    De Boeck, Jo
    Jurczak, Malgorzata
    Vandervorst, Wilfried
    Yanagida, Takeshi
    [J]. NPG ASIA MATERIALS, 2016, 8 : e310 - e310
  • [4] Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method
    Chowdhury, Reaz A.
    Peng, Shane X.
    Youngblood, Jeffrey
    [J]. CELLULOSE, 2017, 24 (05) : 1957 - 1970
  • [5] Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films
    Diaz, Jairo A.
    Wu, Xiawa
    Martini, Ashlie
    Youngblood, Jeffrey P.
    Moon, Robert J.
    [J]. BIOMACROMOLECULES, 2013, 14 (08) : 2900 - 2908
  • [6] Modelling the crystalline deformation of native and regenerated cellulose
    Eichhorn, SJ
    Davies, GR
    [J]. CELLULOSE, 2006, 13 (03) : 291 - 307
  • [7] Frisch M., 2009, Gaussian 09 Citation
  • [8] Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array
    Fujisaki, Yoshihide
    Koga, Hirotaka
    Nakajima, Yoshiki
    Nakata, Mitsuru
    Tsuji, Hiroshi
    Yamamoto, Toshihiro
    Kurita, Taiichiro
    Nogi, Masaya
    Shimidzu, Naoki
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (12) : 1657 - 1663
  • [9] DFT study of the influence of acetyl groups of cellulose acetate on its intrinsic birefringence and wavelength dependence
    Hayakawa, Daichi
    Gouda, Hiroaki
    Hirono, Shuichi
    Ueda, Kazuyoshi
    [J]. CARBOHYDRATE POLYMERS, 2019, 207 : 122 - 130
  • [10] Computational study to evaluate the birefringence of uniaxially oriented film of cellulose triacetate
    Hayakawa, Daichi
    Ueda, Kazuyoshi
    [J]. CARBOHYDRATE RESEARCH, 2015, 402 : 146 - 151