Improved Seasonal Prediction of Temperature and Precipitation over Land in a High-Resolution GFDL Climate Model

被引:149
作者
Jia, Liwei [1 ,2 ]
Yang, Xiaosong [1 ,2 ]
Vecchi, Gabriel A. [2 ]
Gudgel, Richard G. [2 ]
Delworth, Thomas L. [2 ]
Rosati, Anthony [1 ]
Stern, William F. [2 ]
Wittenberg, Andrew T. [2 ]
Krishnamurthy, Lakshmi [1 ,2 ]
Zhang, Shaoqing [2 ]
Msadek, Rym [1 ,2 ]
Kapnick, Sarah [2 ,3 ]
Underwood, Seth [2 ,4 ]
Zeng, Fanrong [2 ]
Anderson, Whit G. [2 ]
Balaji, Venkatramani [2 ,3 ]
Dixon, Keith [2 ]
机构
[1] Univ Corp Atmospher Res, Boulder, CO USA
[2] NOAA Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
[4] Dynam Res Corp, Andover, MA USA
基金
美国海洋和大气管理局;
关键词
DATA ASSIMILATION; FORECAST SKILL; PROJECT ATHENA; PART I; PREDICTABILITY; SURFACE; INITIALIZATION; SIMULATIONS; ATLANTIC; DESIGN;
D O I
10.1175/JCLI-D-14-00112.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study demonstrates skillful seasonal prediction of 2-m air temperature and precipitation over land in a new high-resolution climate model developed by the Geophysical Fluid Dynamics Laboratory and explores the possible sources of the skill. The authors employ a statistical optimization approach to identify the most predictable components of seasonal mean temperature and precipitation over land and demonstrate the predictive skill of these components. First, the improved skill of the high-resolution model over the previous lower-resolution model in seasonal prediction of the Nino-3.4 index and other aspects of interest is shown. Then, the skill of temperature and precipitation in the high-resolution model for boreal winter and summer is measured, and the sources of the skill are diagnosed. Last, predictions are reconstructed using a few of the most predictable components to yield more skillful predictions than the raw model predictions. Over three decades of hindcasts, the two most predictable components of temperature are characterized by a component that is likely due to changes in external radiative forcing in boreal winter and summer and an ENSO-related pattern in boreal winter. The most predictable components of precipitation in both seasons are very likely ENSO-related. These components of temperature and precipitation can be predicted with significant correlation skill at least 9 months in advance. The reconstructed predictions using only the first few predictable components from the model show considerably better skill relative to observations than raw model predictions. This study shows that the use of refined statistical analysis and a high-resolution dynamical model leads to significant skill in seasonal predictions of 2-m air temperature and precipitation over land.
引用
收藏
页码:2044 / 2062
页数:19
相关论文
共 41 条
[41]   Physics of US Surface Temperature Response to ENSO [J].
Zhang, Tao ;
Hoerling, Martin P. ;
Perlwitz, Judith ;
Sun, De-Zheng ;
Murray, Donald .
JOURNAL OF CLIMATE, 2011, 24 (18) :4874-4887