Nonlinear semi-analytic methods for trajectory estimation

被引:94
作者
Park, Ryan S. [1 ]
Scheeres, Daniel J. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
美国国家航空航天局;
关键词
15;
D O I
10.2514/1.29106
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Nonlinear semi-analytic filtering methods to sequentially estimate spacecraft states and their associated uncertainties are presented. We first discuss the state transition tensors that characterize the localized nonlinear behavior of the trajectory statistics and illustrate the importance of higher-order effects on orbit uncertainty propagation. We then present a semi-analytic filtering method by implementing the state transition tensors to sequentially update the filter information with contributions from each measurement, which requires no integration once the tensors are computed. A sun-Earth halo orbit about the L, point is considered as an example with realistic orbit uncertainties, and the results are compared with the extended Kalman filter and unscented Kalman filter.
引用
收藏
页码:1668 / 1676
页数:9
相关论文
共 15 条
[1]  
Bierman G. J., 1977, Factorization methods for Discrete Sequential estimation
[2]  
DOUCET A, 2001, SEQUENTIAL MONTE COR
[3]   A new method for the nonlinear transformation of means and covariances in filters and estimators [J].
Julier, S ;
Uhlmann, J ;
Durrant-Whyte, HF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (03) :477-482
[4]  
JULIER SJ, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1628
[5]   Unscented filtering and nonlinear estimation [J].
Julier, SJ ;
Uhlmann, JK .
PROCEEDINGS OF THE IEEE, 2004, 92 (03) :401-422
[6]  
Julier SJ, 2002, P AMER CONTR CONF, V1-6, P4555, DOI 10.1109/ACC.2002.1025369
[7]  
Kalman RE., 1960, J BASIC ENG, V82D, P35, DOI DOI 10.1115/1.3662552
[8]  
MAYBECK P, 1982, STOCHASTIC ESTIMATIO, V2
[9]  
Montenbruck O., 2001, SATELLITE ORBITS
[10]  
PARK R, 2005, 05170 AAS