GLOBAL WELL-POSEDNESS OF THE RELATIVISTIC BOLTZMANN EQUATION

被引:11
作者
Wang, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Huairou 101488, Peoples R China
关键词
relativistic Boltzmann equation; relativistic Maxwellian; Lorentz transformation; asymptotic behavior; large amplitude oscillations; LANDAU-MAXWELL SYSTEM; ASYMPTOTIC STABILITY; CLASSICAL-SOLUTIONS; ANGULAR CUTOFF; CAUCHY-PROBLEM; WHOLE SPACE; EXPONENTIAL DECAY; NEWTONIAN LIMIT; SOFT POTENTIALS; TIME DECAY;
D O I
10.1137/17M112600X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global existence and uniqueness of a mild solution to the relativistic Boltzmann equation both in the whole space and in torus for a class of initial data with bounded velocity-weighted L-infinity-norm and some smallness on (LxLp infinity)-L-1-norm as well as on defect mass, energy, and entropy. Moreover, the asymptotic stability of the solutions is also investigated in the case of torus.
引用
收藏
页码:5637 / 5694
页数:58
相关论文
共 56 条
[1]   The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :599-661
[2]   Regularity of the gain term and strong L(1) convergence to equilibrium for the relativistic Boltzmann equation [J].
Andreasson, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (05) :1386-1405
[3]  
[Anonymous], 1967, COMMUN MATH PHYS
[4]  
[Anonymous], 1996, The Cauchy Problems in Kinetic Theory
[5]   Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions [J].
Briant, Marc ;
Guo, Yan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) :7000-7079
[6]   The Newtonian limit of the relativistic Boltzmann equation [J].
Calogero, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) :4042-4052
[7]  
Cercignani C., 2002, PROG MATH PHYS, V22
[8]  
de Groot S. R., 1980, Relativistic Kinetic Theory. Principles and Applications
[9]   On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation [J].
Desvillettes, L ;
Villani, C .
INVENTIONES MATHEMATICAE, 2005, 159 (02) :245-316
[10]   MATHEMATICAL ASPECTS OF RELATIVISTIC KINETIC-THEORY [J].
DIJKSTRA, JJ ;
VANLEEUWEN, WA .
PHYSICA A, 1978, 90 (3-4) :450-486