MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data

被引:5
|
作者
Ozaki, Haruka [1 ,4 ]
Iwasaki, Wataru [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778568, Japan
[2] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Bunkyo Ku, Hongo 7-3-1, Tokyo 1130032, Japan
[3] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778564, Japan
[4] RIKEN, Adv Ctr Comp & Commun, Bioinformat Res Unit, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
关键词
DNA binding motifs; ChIP-Seq; Transcription factors; SERUM RESPONSE FACTOR; TRANSCRIPTION-FACTOR; SEQUENCE; SITES; GENE; CREB; EXPRESSION; DISCOVERY; TRANSACTIVATION; ELEMENTS;
D O I
10.1016/j.compbiolchem.2016.01.014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Results: Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. Conclusions: By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 50 条
  • [41] Differential motif enrichment analysis of paired ChIP-seq experiments
    Lesluyes, Tom
    Johnson, James
    Machanick, Philip
    Bailey, Timothy L.
    BMC GENOMICS, 2014, 15
  • [42] Analysis of the epigenetic status of telomeres by using ChIP-seq data
    Vaquero-Sedas, Maria I.
    Luo, Chongyuan
    Vega-Palas, Miguel A.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (21)
  • [43] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Morgane Thomas-Chollier
    Andrew Hufton
    Matthias Heinig
    Sean O'Keeffe
    Nassim El Masri
    Helge G Roider
    Thomas Manke
    Martin Vingron
    Nature Protocols, 2011, 6 : 1860 - 1869
  • [44] Peak Detection on ChIP-Seq Data Using Wavelet Transformation
    Wu, Heng-Yi
    Zhang, Jie
    Huang, Kun
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 555 - 560
  • [45] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Thomas-Chollier, Morgane
    Hufton, Andrew
    Heinig, Matthias
    O'Keeffe, Sean
    El Masri, Nassim
    Roider, Helge G.
    Manke, Thomas
    Vingron, Martin
    NATURE PROTOCOLS, 2011, 6 (12) : 1860 - 1869
  • [46] Response: Mapping nucleosome positions using ChIP-Seq data
    Barski, Artem
    Cuddapah, Suresh
    Cui, Kairong
    Roh, Tae-Young
    Schones, Dustin E.
    Wang, Zhibin
    Wei, Gang
    Chepelev, Iouri
    Zhao, Keji
    CELL, 2007, 131 (05) : 832 - 833
  • [47] csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows
    Lun, Aaron T. L.
    Smyth, Gordon K.
    NUCLEIC ACIDS RESEARCH, 2016, 44 (05) : e45
  • [48] Transient ChIP-Seq for Genome-wide In Vivo DNA Binding Landscape
    Wang, Guanqun
    Li, Xiaozheng
    An, Yunyun
    Zhang, Jianhua
    Li, Haoxuan
    TRENDS IN PLANT SCIENCE, 2021, 26 (05) : 524 - 525
  • [49] Linking TF binding to disease risk using pooled ChIP-seq
    Jones, Bryony
    NATURE REVIEWS GENETICS, 2016, 17 (06) : 317 - 317
  • [50] The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data
    Ambrosini, Giovanna
    Dreos, Rene
    Kumar, Sunil
    Bucher, Philipp
    BMC GENOMICS, 2016, 17