IMAGE SPACE ANALYSIS FOR UNCERTAIN MULTIOBJECTIVE OPTIMIZATION PROBLEMS: ROBUST OPTIMALITY CONDITIONS

被引:2
作者
Ou, Xiaoqing [1 ]
Al-Homidan, Suliman [2 ]
Ansari, Qamrul Hasan [2 ,3 ]
Chen, Jiawei [4 ]
机构
[1] Chongqing Coll Humanities Sci & Technol, Coll Management, Chongqing 401524, Peoples R China
[2] King Fand Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[4] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
  Robust optimality condition; robust multiobjective optimization; im-age space analysis; separation functions; maximal elements; NONLINEAR SEPARATION; UNIFIED APPROACH; DUALITY;
D O I
10.3934/jimo.2021199
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce the C-robust efficient solution and optimistic C-robust efficient solution of uncertain multiobjective optimization problems (UMOP). By using image space analysis, robust optimality conditions as well as saddle point sufficient optimality conditions for uncertain multiobjective optimization problems are established based on real-valued linear (regular) weak separation function and real-valued (vector-valued) nonlinear (regular) weak separation functions. We also introduce two inclusion problems by using the image sets of robust counterpart of (UMOP) and establish the relations between the solu-tion of the inclusion problems and the C-robust efficient solution (respectively, optimistic C-robust efficient solution) of (UMOP).
引用
收藏
页码:629 / 644
页数:16
相关论文
共 30 条
[1]   Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis [J].
Ansari, Qamrul Hasan ;
Koebis, Elisabeth ;
Sharma, Pradeep Kumar .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (03) :817-839
[2]   Duality in robust optimization: Primal worst equals dual best [J].
Beck, Amir ;
Ben-Tal, Aharon .
OPERATIONS RESEARCH LETTERS, 2009, 37 (01) :1-6
[3]   Robust solutions of Linear Programming problems contaminated with uncertain data [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :411-424
[4]  
Ben-Tal A, 2009, PRINC SER APPL MATH, P3
[5]   Theory and Applications of Robust Optimization [J].
Bertsimas, Dimitris ;
Brown, David B. ;
Caramanis, Constantine .
SIAM REVIEW, 2011, 53 (03) :464-501
[6]   VECTOR-VALUED SEPARATION FUNCTIONS AND CONSTRAINED VECTOR OPTIMIZATION PROBLEMS: OPTIMALITY AND SADDLE POINTS [J].
Chen, Jiawei ;
Li, Shengjie ;
Yao, Jen-Chih .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (02) :707-724
[7]   Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints [J].
Chen, Jiawei ;
Koebis, Elisabeth ;
Yao, Jen-Chih .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (02) :411-436
[8]   Separations and Optimality of Constrained Multiobjective Optimization via Improvement Sets [J].
Chen, Jiawei ;
Huang, La ;
Li, Shengjie .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (03) :794-823
[9]   Image Space Analysis for Constrained Inverse Vector Variational Inequalities via Multiobjective Optimization [J].
Chen, Jiawei ;
Koebis, Elisabeth ;
Koebis, Markus ;
Yao, Jen-Chih .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 177 (03) :816-834
[10]  
Chen JW, 2016, J NONLINEAR CONVEX A, V17, P1627