Orthogonality properties of the Hermite and related polynomials

被引:40
作者
Dattoli, G
Srivastava, HM [1 ]
Zhukovsky, K
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119899, Russia
[3] ENEA, Ctr Richerche Frascati, Grp Fis Teor & Matemat Appl, Unita Tecn Sci Tecnol Fis Avanzante, I-00044 Frascati, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
orthogonality property; Hermite polynomials; Hermite-Kampe de Feriet (HKdF) polynomials; multi-index Hermite polynomials; Gauss-Weierstrass transform; generating functions; Laguerre polynomials; operational identities; exponential operators; integral formulas; biorthogonal functions; higher-order Hermite (or Gould-Hopper) polynomials;
D O I
10.1016/j.cam.2004.10.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors present a general method of operational nature with a view to investigating the orthogonality properties of several different families of the Hermite and related polynomials. In particular, the classical Hermite polynomials and some of their higher-order and multi-index generalizations are considered here. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 9 条
[1]  
Appell P., 1926, Fonctions Hypergeometriques et Hyperspheriques: Polynomes d'Hermite
[2]   Comments on monomiality, ordinary polynomials and associated bi-orthogonal functions [J].
Dattoli, G ;
Germano, B ;
Ricci, PE .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (01) :219-227
[3]   Generalized polynomials, operational identities and their applications [J].
Dattoli, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :111-123
[4]  
DATTOLI G, 2005, INTEGRAL TRANSFORM S, V16
[5]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, V2
[6]   OPERATIONAL FORMULAS CONNECTED WITH 2 GENERALIZATIONS OF HERMITE POLYNOMIALS [J].
GOULD, HW ;
HOPPER, AT .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (01) :51-+
[7]   A REPRESENTATION-THEORY FOR SOLUTIONS OF A HIGHER-ORDER HEAT-EQUATION .1. [J].
HAIMO, DT ;
MARKETT, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (01) :89-107
[8]   A REPRESENTATION-THEORY FOR SOLUTIONS OF A HIGHER-ORDER HEAT-EQUATION .2. [J].
HAIMO, DT ;
MARKETT, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) :289-305
[9]  
Srivastava H.M., 1984, a Treatise on Generating Functions