Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes

被引:416
作者
Jia, Haiping [1 ]
Li, Xiaolin [1 ]
Song, Junhua [1 ]
Zhang, Xin [2 ]
Luo, Langli [3 ]
He, Yang [3 ]
Li, Binsong [4 ]
Cai, Yun [5 ]
Hu, Shenyang [5 ]
Xiao, Xingcheng [4 ]
Wang, Chongmin [3 ]
Rosso, Kevin M. [2 ]
Yi, Ran [1 ]
Patel, Rajankumar [1 ]
Zhang, Ji-Guang [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[2] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[3] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA
[4] Gen Motors Res & Dev Ctr, 30500 Mound Rd, Warren, MI 48090 USA
[5] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
关键词
CARBON NANOTUBES; DESIGN; ELECTRODES; STORAGE; STABILITY; EXPANSION; GRAPHITE; CATHODE; BINDER; SIZE;
D O I
10.1038/s41467-020-15217-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Porous structured silicon has been regarded as a promising candidate to overcome pulverization of silicon-based anodes. However, poor mechanical strength of these porous particles has limited their volumetric energy density towards practical applications. Here we design and synthesize hierarchical carbon-nanotube@silicon@carbon microspheres with both high porosity and extraordinary mechanical strength (>200MPa) and a low apparent particle expansion of 40% upon full lithiation. The composite electrodes of carbon-nanotube@silicon@carbon-graphite with a practical loading (3mAhcm(-2)) deliver 750mAhg(-1) specific capacity, <20% initial swelling at 100% state-of-charge, and 92% capacity retention over 500 cycles. Calendered electrodes achieve 980mAhcm(-3) volumetric capacity density and <50% end-of-life swell after 120 cycles. Full cells with LiNi1/3Mn1/3Co1/3O2 cathodes demonstrate >92% capacity retention over 500 cycles. This work is a leap in silicon anode development and provides insights into the design of electrode materials for other batteries.
引用
收藏
页数:9
相关论文
共 52 条
[41]   Performance and cost of materials for lithium-based rechargeable automotive batteries [J].
Schmuch, Richard ;
Wagner, Ralf ;
Horpel, Gerhard ;
Placke, Tobias ;
Winter, Martin .
NATURE ENERGY, 2018, 3 (04) :267-278
[42]   Lithium-ion batteries. A look into the future [J].
Scrosati, Bruno ;
Hassoun, Jusef ;
Sun, Yang-Kook .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3287-3295
[43]  
Sun J, 2015, NAT NANOTECHNOL, V10, P980, DOI [10.1038/nnano.2015.194, 10.1038/NNANO.2015.194]
[44]  
Sun YK, 2012, NAT MATER, V11, P942, DOI [10.1038/nmat3435, 10.1038/NMAT3435]
[45]  
Sun YM, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.71, 10.1038/NENERGY.2016.71]
[46]   Nanostructured silicon for high capacity lithium battery anodes [J].
Szczech, Jeannine R. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (01) :56-72
[47]   Designing nanostructured Si anodes for high energy lithium ion batteries [J].
Wu, Hui ;
Cui, Yi .
NANO TODAY, 2012, 7 (05) :414-429
[48]  
Wu H, 2012, NAT NANOTECHNOL, V7, P309, DOI [10.1038/nnano.2012.35, 10.1038/NNANO.2012.35]
[49]   Inward lithium-ion breathing of hierarchically porous silicon anodes [J].
Xiao, Qiangfeng ;
Gu, Meng ;
Yang, Hui ;
Li, Bing ;
Zhang, Cunman ;
Liu, Yang ;
Liu, Fang ;
Dai, Fang ;
Yang, Li ;
Liu, Zhongyi ;
Xiao, Xingcheng ;
Liu, Gao ;
Zhao, Peng ;
Zhang, Sulin ;
Wang, Chongmin ;
Lu, Yunfeng ;
Cai, Mei .
NATURE COMMUNICATIONS, 2015, 6
[50]   Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive [J].
Xu, Chao ;
Lindgren, Fredrik ;
Philippe, Bertrand ;
Gorgoi, Mihaela ;
Bjorefors, Fredrik ;
Edstrom, Kristina ;
Gustafsson, Torbjorn .
CHEMISTRY OF MATERIALS, 2015, 27 (07) :2591-2599