Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering

被引:288
|
作者
Brydone, A. S. [1 ]
Meek, D. [1 ]
Maclaine, S. [1 ]
机构
[1] So Gen Hosp, Glasgow G51 4TF, Lanark, Scotland
关键词
bone graft; autograft; allograft; hydroxyapatite; osteolysis; nanotopography; osteoconductive; osteoinductive; BETA-TRICALCIUM PHOSPHATE; LUMBAR SPINE FUSION; MORPHOGENETIC PROTEIN-2; TITANIUM IMPLANTS; IN-VIVO; POSTEROLATERAL FUSION; POROUS HYDROXYAPATITE; INCREASED OSTEOBLAST; DONOR AGE; SURFACE;
D O I
10.1243/09544119JEIM770
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As the population ages, the number of operations performed on bone is expected to increase. Diseases such as arthritis, tumours, and trauma can lead to defects in the skeleton requiring an operation to replace or restore the lost bone. Surgeons can use autografts, allografts, and/or bone graft substitutes to restore areas of bone loss. Surgical implants are also used in addition or in isolation to replace the diseased bone. This review considers the application of available bone grafts in different clinical settings. It also discusses recently introduced bioactive biomaterials and highlights the clinical difficulties and technological deficiencies that exist in our current surgical practice.
引用
收藏
页码:1329 / 1343
页数:15
相关论文
共 50 条
  • [21] Comparative review of piezoelectric biomaterials approach for bone tissue engineering
    Samadi, Ali
    Salati, Mohammad Amin
    Safari, Amin
    Jouyandeh, Maryam
    Barani, Mahmood
    Chauhan, Narendra Pal Singh
    Golab, Elias Ghaleh
    Zarrintaj, Payam
    Kar, Saptarshi
    Seidi, Farzad
    Hejna, Aleksander
    Saeb, Mohammad Reza
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2022, 33 (12) : 1555 - 1594
  • [22] Potential Application of Protamine for Antimicrobial Biomaterials in Bone Tissue Engineering
    Honda, Michiyo
    Matsumoto, Morio
    Aizawa, Mamoru
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (12) : 1 - 13
  • [23] Calcium Phosphate-Based Biomaterials for Bone Repair
    Hou, Xiaodong
    Zhang, Lei
    Zhou, Zifei
    Luo, Xiong
    Wang, Tianlong
    Zhao, Xinyu
    Lu, Bingqiang
    Chen, Feng
    Zheng, Longpo
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2022, 13 (04)
  • [24] Three dimensional printed nanostructure biomaterials for bone tissue engineering
    Marew, Tesfa
    Birhanu, Gebremariam
    REGENERATIVE THERAPY, 2021, 18 : 102 - 111
  • [25] Biomaterials for bone tissue engineering: achievements to date and future directions
    Garimella, Adithya
    Ghosh, Subrata Bandhu
    Bandyopadhyay-Ghosh, Sanchita
    BIOMEDICAL MATERIALS, 2025, 20 (01)
  • [26] Bone grafting alternatives for cavitary defects in children
    Allison, Daniel C.
    McIntyre, James A.
    Ferro, Austin
    Brien, Earl
    Menendez, Lawrence R.
    CURRENT ORTHOPAEDIC PRACTICE, 2013, 24 (03): : 267 - 279
  • [27] The Biomechanical Effect of Bone Grafting and Bone Graft Remodeling in Patients With Anterior Shoulder Instability
    Sigrist, Bastian
    Ferguson, Stephen
    Boehm, Elisabeth
    Jung, Christian
    Scheibel, Markus
    Moroder, Philipp
    AMERICAN JOURNAL OF SPORTS MEDICINE, 2020, 48 (08) : 1857 - 1864
  • [28] Evaluation of Volumetric Changes of Augmented Maxillary Sinus With Different Bone Grafting Biomaterials
    Gultekin, B. Alper
    Cansiz, Erol
    Borahan, Oguz
    Mangano, Carlo
    Kolerman, Roni
    Mijiritsky, Eitan
    Yalcin, Serdar
    JOURNAL OF CRANIOFACIAL SURGERY, 2016, 27 (02) : E144 - E148
  • [29] Bone Regeneration Using Antiosteoporotic Drugs in Adjunction with Bone Grafting: A Meta-analysis
    Shaheen, Marwa Y.
    Basudan, Amani M.
    de Vries, Rob B.
    van den Beucken, Jeroen J. J. P.
    Jansen, John A.
    Alghamdi, Hamdan S.
    TISSUE ENGINEERING PART B-REVIEWS, 2019, 25 (06) : 500 - 509
  • [30] Resorbable biomaterials as bone graft substitutes
    Bohner, Marc
    MATERIALS TODAY, 2010, 13 (1-2) : 24 - 30