An Integrated Statistical-Machine Learning Approach for Runoff Prediction

被引:59
作者
Singh, Abhinav Kumar [1 ]
Kumar, Pankaj [1 ]
Ali, Rawshan [2 ]
Al-Ansari, Nadhir [3 ]
Vishwakarma, Dinesh Kumar [4 ]
Kushwaha, Kuldeep Singh [5 ]
Panda, Kanhu Charan [6 ]
Sagar, Atish [7 ]
Mirzania, Ehsan [8 ]
Elbeltagi, Ahmed [9 ]
Kuriqi, Alban [10 ,11 ]
Heddam, Salim [12 ]
机构
[1] GB Pant Univ Agr & Technol, Dept Soil & Water Conservat Engn, Pantnagar 263145, Uttar Pradesh, India
[2] Erbil Polytech Univ, Koya Tech Inst, Dept Petr, Erbil 44001, Iraq
[3] Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, S-97187 Lulea, Sweden
[4] GB Pant Univ Agr & Technol, Dept Irrigat & Drainage Engn, Pantnagar 263145, Uttar Pradesh, India
[5] Cent Univ Jharkhand, Ctr Water Engn & Management, Ranchi 835205, Bihar, India
[6] Banaras Hindu Univ, Inst Agr Sci, Dept Agr Engn, Varanasi 221005, Uttar Pradesh, India
[7] ICAR Indian Agr Res Inst, Div Agr Engn, New Delhi 110012, India
[8] Univ Tabriz, Dept Water Engn, Fac Agr, Tabriz 5166616471, Iran
[9] Mansoura Univ, Agr Engn Dept, Fac Agr, Mansoura 35516, Egypt
[10] Univ Lisbon, Inst Super Tecn, CERIS, P-1649004 Lisbon, Portugal
[11] Univ Business & Technol, Civil Engn Dept, Pristina 10000, Kosovo
[12] Univ 20 Aout 1955, Fac Sci, Lab Res Biodivers Interact Ecosyst & Biotechnol 1, Hydraul Div,Agron Dept, Route El Hadaik, Skikda 21000, Algeria
关键词
MARS; SVM; RF; rainfall; runoff; rainfall-runoff modeling; DAILY PAN-EVAPORATION; ARTIFICIAL NEURAL-NETWORKS; SUPPORT-VECTOR-MACHINE; DAILY REFERENCE EVAPOTRANSPIRATION; SEDIMENT LOAD PREDICTION; SOIL-TEMPERATURE; RIVER-BASIN; METEOROLOGICAL DATA; INFERENCE SYSTEM; RANDOM FOREST;
D O I
10.3390/su14138209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nowadays, great attention has been attributed to the study of runoff and its fluctuation over space and time. There is a crucial need for a good soil and water management system to overcome the challenges of water scarcity and other natural adverse events like floods and landslides, among others. Rainfall-runoff (R-R) modeling is an appropriate approach for runoff prediction, making it possible to take preventive measures to avoid damage caused by natural hazards such as floods. In the present study, several data-driven models, namely, multiple linear regression (MLR), multiple adaptive regression splines (MARS), support vector machine (SVM), and random forest (RF), were used for rainfall-runoff prediction of the Gola watershed, located in the south-eastern part of the Uttarakhand. The rainfall-runoff model analysis was conducted using daily rainfall and runoff data for 12 years (2009 to 2020) of the Gola watershed. The first 80% of the complete data was used to train the model, and the remaining 20% was used for the testing period. The performance of the models was evaluated based on the coefficient of determination (R-2), root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and percent bias (PBAIS) indices. In addition to the numerical comparison, the models were evaluated. Their performances were evaluated based on graphical plotting, i.e., time-series line diagram, scatter plot, violin plot, relative error plot, and Taylor diagram (TD). The comparison results revealed that the four heuristic methods gave higher accuracy than the MLR model. Among the machine learning models, the RF (RMSE (m(3)/s), R-2, NSE, and PBIAS (%) = 6.31, 0.96, 0.94, and -0.20 during the training period, respectively, and 5.53, 0.95, 0.92, and -0.20 during the testing period, respectively) surpassed the MARS, SVM, and the MLR models in forecasting daily runoff for all cases studied. The RF model outperformed in all four models' training and testing periods. It can be summarized that the RF model is best-in-class and delivers a strong potential for the runoff prediction of the Gola watershed.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Climate-informed monthly runoff prediction model using machine learning and feature importance analysis
    Yan, Lei
    Lei, Qingwen
    Jiang, Cong
    Yan, Pengtao
    Ren, Zheng
    Liu, Bin
    Liu, Zhangjun
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [22] Machine learning for aircraft approach time prediction
    Ye B.
    Bao X.
    Liu B.
    Tian Y.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (10):
  • [23] Comparison of different methodologies for rainfall-runoff modeling: machine learning vs conceptual approach
    Adnan, Rana Muhammad
    Petroselli, Andrea
    Heddam, Salim
    Santos, Celso Augusto Guimaraes
    Kisi, Ozgur
    NATURAL HAZARDS, 2021, 105 (03) : 2987 - 3011
  • [24] Prediction of cryptocurrency returns using machine learning
    Akyildirim, Erdinc
    Goncu, Ahmet
    Sensoy, Ahmet
    ANNALS OF OPERATIONS RESEARCH, 2021, 297 (1-2) : 3 - 36
  • [25] A machine learning approach for the prediction of settling velocity
    Goldstein, Evan B.
    Coco, Giovanni
    WATER RESOURCES RESEARCH, 2014, 50 (04) : 3595 - 3601
  • [26] Basic Statistical Estimation Outperforms Machine Learning in Monthly Prediction of Seasonal Climatic Parameters
    Hussein, Eslam A.
    Ghaziasgar, Mehrdad
    Thron, Christopher
    Vaccari, Mattia
    Bagula, Antoine
    ATMOSPHERE, 2021, 12 (05)
  • [27] Study on the Optimization and Stability of Machine Learning Runoff Prediction Models in the Karst Area
    Mo, Chongxun
    Liu, Guangming
    Lei, Xingbi
    Zhang, Mingshan
    Ruan, Yuli
    Lai, Shufeng
    Xing, Zhenxiang
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [28] Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping
    Huang, Faming
    Cao, Zhongshan
    Guo, Jianfei
    Jiang, Shui-Hua
    Li, Shu
    Guo, Zizheng
    CATENA, 2020, 191
  • [29] Analysis and prediction of Indian stock market: a machine-learning approach
    Shilpa Srivastava
    Millie Pant
    Varuna Gupta
    International Journal of System Assurance Engineering and Management, 2023, 14 : 1567 - 1585
  • [30] Prediction of harbour vessel fuel consumption based on machine learning approach
    Chen, Zhong Shuo
    Lam, Jasmine Siu Lee
    Xiao, Zengqi
    OCEAN ENGINEERING, 2023, 278