Random forest for spatialization of daily evapotranspiration (ET0) in watersheds in the Atlantic Forest

被引:5
作者
Baratto, Pablo Francisco Benitez [1 ]
Cecilio, Roberto Avelino [2 ]
de Sousa Teixeira, David Bruno [3 ]
Zanetti, Sidney Sara [2 ]
Xavier, Alexandre Candido [2 ]
机构
[1] Santa Catarina State Univ, Dept Soils & Nat Resources, BR-88520000 Lages, SC, Brazil
[2] Univ Fed Espirito Santo, Dept Forest & Wood Sci, BR-29550000 Jeronimo Monteiro, ES, Brazil
[3] Univ Fed Vicosa, Dept Agr Engn, Ave Peter Henry Rolfs, BR-36570900 Vicosa, MG, Brazil
关键词
Machine learning; Spatial interpolation; Reference evapotranspiration; IDW; ADW; CLIMATIC DATA; INTERPOLATION; MODELS; VARIABILITY; STATE; CLASSIFICATION; PERFORMANCE; HARGREAVES; RAINFALL; DATASETS;
D O I
10.1007/s10661-022-10110-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The importance of daily data on reference evapotranspiration (ET0) has increased in recent years due to its relevance in planning and decision making regarding irrigated agriculture, water production, and forest restoration. Facing the scarcity of this information measured in loco, the study of interpolation methods capable of representing ET0 becomes important. Therefore, this study aimed to evaluate the adequacy of the Random Forest (RF) method in the spatialization of ET0 in the watersheds of the Mid-South region of the Espirito Santo State, located within the Atlantic Forest biome, Brazil. From this study, it was found that the RF method is the most suitable one for ET0 spatialization when compared to the Angular distance weighting (ADW) and the inverse distance weighting (IDW) techniques. Also, the spatializations carried out by this method were transformed into databases in a grid format and made available online. Furthermore, the RF database was also compared to other ET0 grid databases, and it was concluded that the RF database also carried out a better performance than the other ones.
引用
收藏
页数:19
相关论文
共 85 条
[1]  
Allen R.G., 1998, Paper No. 56, V300, pD05109
[2]   ETo-Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000-2018) [J].
Althoff, Daniel ;
Brant Dias, Santos Henrique ;
Filgueiras, Roberto ;
Rodrigues, Lineu Neiva .
WATER RESOURCES RESEARCH, 2020, 56 (07)
[3]   Koppen's climate classification map for Brazil [J].
Alvares, Clayton Alcarde ;
Stape, Jose Luiz ;
Sentelhas, Paulo Cesar ;
de Moraes Goncalves, Jose Leonardo ;
Sparovek, Gerd .
METEOROLOGISCHE ZEITSCHRIFT, 2013, 22 (06) :711-728
[4]  
ANA (Agencia Nacional de Aguas), 2017, Technical Report
[5]  
Aparecido Lucas Eduardo de Oliveira, 2020, Rev. bras. meteorol., V35, P63, DOI 10.1590/0102-7786351026
[6]  
Arajo L. M., 2018, GAIA SCI, V12, DOI [10.22478/ufpb.1981-1268.2018v12n3.34947, DOI 10.22478/UFPB.1981-1268.2018V12N3.34947]
[7]   Estimation of maximum and minimum air temperatures for the "Circuito das Frutas" region (Sao Paulo State, Brazil) [J].
Bardin, Ludmila ;
Pedro Junior, Mario J. ;
de Moraes, Jener F. L. .
REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2010, 14 (06) :618-624
[8]   A random forest guided tour [J].
Biau, Gerard ;
Scornet, Erwan .
TEST, 2016, 25 (02) :197-227
[9]   Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing [J].
Brant Dias, Santos Henrique ;
Filgueiras, Roberto ;
Fernandes Filho, Elpidio Inacio ;
Arcanjo, Gemima Santos ;
da Silva, Gustavo Henrique ;
Mantovani, Everardo Chartuni ;
da Cunha, Fernando Franca .
PLOS ONE, 2021, 16 (02)
[10]  
Braum E. S., 2020, DISSERTATION MSC