Bayesian User Localization and Tracking for Reconfigurable Intelligent Surface Aided MIMO Systems

被引:39
作者
Teng, Boyu [1 ]
Yuan, Xiaojun [1 ]
Wang, Rui [2 ,3 ]
Jin, Shi [4 ]
机构
[1] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 610000, Peoples R China
[2] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[3] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 201804, Peoples R China
[4] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Location awareness; Array signal processing; Radar tracking; MIMO communication; Sensors; Signal processing algorithms; Bayes methods; Reconfigurable intelligent surface; user localiza-tion; user tracking; MIMO; message passing; REFLECTING SURFACE; CHANNEL ESTIMATION; INFORMATION; PROPAGATION; POSITION;
D O I
10.1109/JSTSP.2022.3173747
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the user localization and tracking problem in the reconfigurable intelligent surface (RIS) aided multiple-input multiple-output (MIMO) system, where a multi-antenna base station (BS) and multiple RISs are deployed to assist the localization and tracking of a multi-antenna user. By establishing a probability transition model for user mobility, we develop a message-passing algorithm, termed the Bayesian user localization and tracking (BULT) algorithm, to estimate and track the user position and the angles-of-arrivals (AoAs) at the user in an online fashion. We also derive the Bayesian Cramer Rao bound (BCRB) to characterize the fundamental performance limit of the considered tracking problem. To improve the tracking performance, we optimize the beamforming design at the BS and the RISs to minimize the derived BCRB. Simulation results show that our BULT algorithm can perform close to the derived BCRB, and significantly outperforms the counterpart algorithms without exploiting the temporal correlation of the user location.
引用
收藏
页码:1040 / 1054
页数:15
相关论文
共 41 条
[1]   Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization [J].
Abeywickrama, Samith ;
Zhang, Rui ;
Wu, Qingqing ;
Yuen, Chau .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (09) :5849-5863
[2]   Variational Bayesian Inference of Line Spectra [J].
Badiu, Mihai-Alin ;
Hansen, Thomas Lundgaard ;
Fleury, Bernard Henri .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (09) :2247-2261
[3]   Atomic Norm Denoising With Applications to Line Spectral Estimation [J].
Bhaskar, Badri Narayan ;
Tang, Gongguo ;
Recht, Benjamin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (23) :5987-5999
[4]  
Bourdoux A, 2020, Arxiv, DOI arXiv:2006.01779
[5]   Hierarchical Passive Beamforming for Reconfigurable Intelligent Surface Aided Communications [J].
Cai, Chang ;
Yuan, Xiaojun ;
Yan, Wenjing ;
Huang, Zhouyang ;
Liang, Ying-Chang ;
Zhang, Wei .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (09) :1909-1913
[6]   Fisher information for a complex Gaussian random variable: Beamforming applications for wave propagation in a random medium [J].
Collier, SL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (11) :4236-4248
[7]   Message-passing algorithms for compressed sensing [J].
Donoho, David L. ;
Maleki, Arian ;
Montanari, Andrea .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (45) :18914-18919
[8]   Reconfigurable Intelligent Surfaces for Localization: Position and Orientation Error Bounds [J].
Elzanaty, Ahmed ;
Guerra, Anna ;
Guidi, Francesco ;
Alouini, Mohamed-Slim .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :5386-5402
[9]   POSITION-LOCATION SOLUTIONS BY TAYLOR-SERIES ESTIMATION [J].
FOY, WH .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1976, 12 (02) :187-194
[10]  
He He J. J., P IEEE WIR COMM NETW, P1