Survey on clustering methods : Towards fuzzy clustering for big data

被引:0
作者
Ben Ayed, Abdelkarim [1 ]
Ben Halima, Mohamed [1 ]
Alimi, Adel M. [1 ]
机构
[1] Univ Sfax, Natl Engn Sch Sfax, REGIM Lab, Res Groups Intelligent Machines, BP 1173, Sfax 3038, Tunisia
来源
2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR) | 2014年
关键词
clustering; fuzzy; big data; ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this report, we propose to give a review of the most used clustering methods in the literature. First, we give an introduction about clustering methods, how they work and their main challenges. Second, we present the clustering methods with some comparisons including mainly the classical partitioning clustering methods like well-known k-means algorithms, Gaussian Mixture Modals and their variants, the classical hierarchical clustering methods like the agglomerative algorithm, the fuzzy clustering methods and Big data clustering methods. We present some examples of clustering algorithms comparison. Finally, we present our ideas to build a scalable and noise insensitive clustering system based on fuzzy type-2 clustering methods.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 27 条
  • [1] A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    Ahmed, MN
    Yamany, SM
    Mohamed, N
    Farag, AA
    Moriarty, T
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) : 193 - 199
  • [2] [Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
  • [3] Begum SA., 2012, INT J COMPUTER APPL, V54, P4
  • [4] Berkhin P, 2006, GROUPING MULTIDIMENSIONAL DATA: RECENT ADVANCES IN CLUSTERING, P25
  • [5] Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P137
  • [6] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [7] Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
  • [8] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [9] FORGY EW, 1965, BIOMETRICS, V21, P768
  • [10] UNSUPERVISED OPTIMAL FUZZY CLUSTERING
    GATH, I
    GEVA, AB
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) : 773 - 781