CuO-In2O3 Catalysts Supported on Halloysite Nanotubes for CO2 Hydrogenation to Dimethyl Ether

被引:10
|
作者
Pechenkin, Alexey [1 ,2 ]
Potemkin, Dmitry [2 ,3 ]
Rubtsova, Maria [1 ]
Snytnikov, Pavel [2 ]
Plyusnin, Pavel [4 ]
Glotov, Aleksandr [1 ]
机构
[1] Gubkin Russian State Univ Oil & Gas, Fac Chem Technol & Ecol, Dept Phys & Colloid Chem, 65 Leninsky Prosp, Moscow 119991, Russia
[2] Boreskov Inst Catalysis, Pr Akad Lavrentieva 5, Novosibirsk 630090, Russia
[3] Novosibirsk State Tech Univ, Dept Environm Engn, Karl Marx Pr 20, Novosibirsk 630073, Russia
[4] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia
关键词
CO2; hydrogenation; dimethyl ether; indium oxide; copper-indium catalysts; halloysite nanotubes; aluminosilicates; METHANOL SYNTHESIS; CUO/ZNO/AL2O3; CATALYST; CARBON-DIOXIDE; DME SYNTHESIS; OXIDE; SITES; PD;
D O I
10.3390/catal11101151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogenation of CO2 relative to valuable chemical compounds such as methanol or dimethyl ether (DME) is an attractive route for reducing CO2 emissions in the atmosphere. In the present work, the hydrogenation of CO2 into DME over CuO-In2O3, supported on halloysite nanotubes (HNT) was investigated in the temperature range 200-300 degrees C at 40 atm. HNT appears to be novel promising support for bifunctional catalysts due to its thermal stability and the presence of acidic sites on its surface. CuO-In2O3/HNT catalysts demonstrate higher CO2 conversion and DME selectivity compared to non-indium CuO/HNT catalysts. The catalysts were investigated by N-2 adsorption, X-ray diffraction, hydrogen-temperature programmed reduction and transition electron microscopy. The acid sites were analyzed by temperature programmed desorption of ammonia. It was shown that CuO/HNT was unstable under reaction conditions in contrast to CuO-In2O3/HNT. The best CuO-In2O3/HNT catalyst provided CO2 conversion of 7.6% with 65% DME selectivity under P = 40 atm, T = 250 degrees C, gas hour space velocity 12,000 h(-1) and H-2:CO2 = 3:1.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] CO2 hydrogenation to dimethyl ether over In2O3 catalysts supported on aluminosilicate halloysite nanotubes
    Pechenkin, Alexey
    Potemkin, Dmitry
    Badmaev, Sukhe
    Smirnova, Ekaterina
    Cherednichenko, Kirill
    Vinokurov, Vladimir
    Glotov, Aleksandr
    GREEN PROCESSING AND SYNTHESIS, 2021, 10 (01) : 594 - 605
  • [2] CO2 hydrogenation to methanol and dimethyl ether by Pd-Pd2Ga catalysts supported over Ga2O3 polymorphs
    Oyola-Rivera, Oscar
    Angel Baltanas, Miguel
    Cardona-Martinez, Nelson
    JOURNAL OF CO2 UTILIZATION, 2015, 9 : 8 - 15
  • [3] Enhanced stability of Fe-modified CuO-ZnO-ZrO2-Al2O3/HZSM-5 bifunctional catalysts for dimethyl ether synthesis from CO2 hydrogenation
    Fan, Xiao
    Ren, Shoujie
    Jin, Baitang
    Li, Shiguang
    Yu, Miao
    Liang, Xinhua
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 : 106 - 113
  • [4] Direct CO2 Hydrogenation over Bifunctional Catalysts to Produce Dimethyl Ether-A Review
    Ebrahimian, Samira
    Bhattacharya, Sankar
    ENERGIES, 2024, 17 (15)
  • [5] Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts
    Gao Wengui
    Wang Hua
    Wang Yuhao
    Guo Wei
    Jia Miaoyao
    JOURNAL OF RARE EARTHS, 2013, 31 (05) : 470 - 476
  • [6] Direct hydrogenation of CO2 to dimethyl ether (DME) over hybrid catalysts containing CuO/ZrO2 as a metallic function and heteropolyacids as an acidic function
    Kornas, A.
    Sliwa, M.
    Ruggiero-Mikolajczyk, M.
    Samson, K.
    Podobinski, J.
    Karcz, R.
    Duraczynska, D.
    Rutkowska-Zbik, D.
    Grabowski, R.
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2020, 130 (01) : 179 - 194
  • [7] Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts
    Wang, Song
    Mao, Dongsen
    Guo, Xiaoming
    Wu, Guisheng
    Lu, Guanzhong
    CATALYSIS COMMUNICATIONS, 2009, 10 (10) : 1367 - 1370
  • [8] Methanol Synthesis from CO2 Hydrogenation over Supported CuO/TiO2 Catalysts
    Liu Chao-Heng
    Guo Xiao-Ming
    Zhong Cheng-Lin
    Li Liang
    Hua Yu-Xi
    Mao Dong-Sen
    Lu Guan-Zhong
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2016, 32 (08) : 1405 - 1412
  • [9] Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol
    Shen C.
    Sun K.
    Zhang Y.
    Liu C.
    Huagong Xuebao/CIESC Journal, 2023, 74 (01): : 145 - 156
  • [10] Experimental work and kinetic modelling of CO2 hydrogenation to methanol on CeO2 supported In2O3 catalyst
    Ng, Wei Lin
    Sripada, Pramod
    Biswas, Saheli
    Bhattacharya, Sankar
    APPLIED CATALYSIS A-GENERAL, 2022, 646