Nonlocal semilinear elliptic problems with singular nonlinearity

被引:11
作者
Youssfi, Ahmed [1 ]
Mahmoud, Ghoulam Ould Mohamed [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Lab Math Anal & Applicat FSDM, Natl Sch Appl Sci, My Abdellah Ave,Rd Imouzer,POB 72, Fes Principale 30000, Fez, Morocco
关键词
35R11; 35J75; 35S15; 47G20; 35B51; DIRICHLET PROBLEM; FRACTIONAL LAPLACIAN; WEAK SOLUTIONS; EQUATIONS; REGULARITY; POWER;
D O I
10.1007/s00526-021-02034-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Lazer-Mckenna-type problem involving the fractional Laplacian and singular nonlinearity. We investigate existence, regularity and uniqueness of solutions in light of the interplay between the nonlinearities and the summability of the datum.
引用
收藏
页数:34
相关论文
共 53 条
[1]   Nonlinear fractional elliptic problem with singular term at the boundary [J].
Abdellaoui, B. ;
Biroud, K. ;
Primo, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (06) :909-932
[2]   Nonlinear elliptic problem related to the Hardy inequality with singular term at the boundary [J].
Abdellaoui, B. ;
Biroud, K. ;
Davila, J. ;
Mahmoudi, F. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (03)
[3]  
Abdellaoui B, 2017, MOROCCAN J PURE APPL, V3, P116, DOI [10.1515/mjpaa-2017-0010, DOI 10.1515/MJPAA-2017-0010]
[4]   On the fractional p-Laplacian equations with weight and general datum [J].
Abdellaoui, Boumediene ;
Attar, Ahmed ;
Bentifour, Rachid .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :144-174
[5]   Optimal results for the fractional heat equation involving the Hardy potential [J].
Abdellaoui, Boumediene ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 :166-207
[6]   The effect of the Hardy potential in some Calderon-Zygmund properties for the fractional Laplacian [J].
Abdellaoui, Boumediene ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) :8160-8206
[7]   Positive solutions to a fractional equation with singular nonlinearity [J].
Adimurthi ;
Giacomoni, Jacques ;
Santra, Sanjiban .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) :1191-1226
[8]   Boundary Harnack principle for p-harmonic functions in smooth Euclidean domains [J].
Aikawa, Hiroaki ;
Kilpelainen, Tero ;
Shanmugalingam, Nageswari ;
Zhong, Xiao .
POTENTIAL ANALYSIS, 2007, 26 (03) :281-301
[9]   Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity [J].
Arcoya, David ;
Moreno-Merida, Lourdes .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :281-291
[10]  
Aris O., 1975, Mathematical Theory of Diffusion and Reaction in Permeable Catalysts