Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors

被引:60
作者
Han, Xuexiang [1 ,2 ]
Xu, Ying [1 ,2 ]
Geranpayehvaghei, Marzieh [1 ]
Anderson, Gregory J. [3 ]
Li, Yiye [1 ,2 ]
Nie, Guangjun [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Royal Brisbane Hosp, QIMR Berghofer Med Res Inst, Brisbane, Qld 4029, Australia
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Desmoplastic tumor; Cancer-associated fibroblast; Anti-stromal therapy; Nanomedicine; Drug delivery; FIBROBLAST-ACTIVATION PROTEIN; CANCER-ASSOCIATED-FIBROBLASTS; CARCINOMA-ASSOCIATED FIBROBLASTS; PANCREATIC STELLATE CELLS; EPITHELIAL-MESENCHYMAL TRANSITION; TRANSCAPILLARY PRESSURE-GRADIENT; ENHANCED DRUG PERFUSION; GROWTH-FACTOR-BETA; EXTRACELLULAR-MATRIX; T-CELLS;
D O I
10.1016/j.biomaterials.2019.119745
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Solid tumors, especially desmoplastic tumors, are characterized by a dense fibrotic stroma composed of abundant cancer-associated fibroblasts and excessive extracellular matrix. These physical barriers seriously compromise drug delivery to tumor cells, leading to suboptimal treatment efficacy and resistance to current tumorcentric therapeutics. The need to overcome these problems has driven extensive investigations and sparked the flourish of anti-stromal therapy, particularly in the field of nanomedicines. In this paper, we firstly review the major components of the tumor stroma and discuss their impact on drug delivery. Then, according to the different stromal targets, we summarize the current status of anti-stromal therapy and highlight recent advances in anti-stromal nanomedicines. We further examine the potential of nano-enabled anti-stromal therapy to enhance the anti-tumor efficacy of other therapeutic modalities, including chemotherapy, immunotherapy, phototherapy and radiotherapy. Finally, the potential concerns and future developments of anti-stromal nanomedicines are discussed.
引用
收藏
页数:17
相关论文
共 227 条
  • [1] Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites
    Aggarwal, Saurabh
    Brennen, W. Nathaniel
    Kole, Thomas P.
    Schneider, Elizabeth
    Topaloglu, Ozlem
    Yates, Melinda
    Cotter, Robert J.
    Denmeade, Samuel R.
    [J]. BIOCHEMISTRY, 2008, 47 (03) : 1076 - 1086
  • [2] Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts
    Albrengues, Jean
    Bertero, Thomas
    Grasset, Eloise
    Bonan, Stephanie
    Maiel, Majdi
    Bourget, Isabelle
    Philippe, Claude
    Serrano, Cecilia Herraiz
    Benamar, Samia
    Croce, Olivier
    Sanz-Moreno, Victoria
    Meneguzzi, Guerrino
    Feral, Chloe C.
    Cristofari, Gael
    Gaggioli, Cedric
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [3] Stromal disrupting effects of nab-paclitaxel in pancreatic cancer
    Alvarez, R.
    Musteanu, M.
    Garcia-Garcia, E.
    Lopez-Casas, P. P.
    Megias, D.
    Guerra, C.
    Munoz, M.
    Quijano, Y.
    Cubillo, A.
    Rodriguez-Pascual, J.
    Plaza, C.
    de Vicente, E.
    Prados, S.
    Tabernero, S.
    Barbacid, M.
    Lopez-Rios, F.
    Hidalgo, M.
    [J]. BRITISH JOURNAL OF CANCER, 2013, 109 (04) : 926 - 933
  • [4] Unraveling the therapeutic potential of the Hedgehog pathway in cancer
    Amakye, Dereck
    Jagani, Zainab
    Dorsch, Marion
    [J]. NATURE MEDICINE, 2013, 19 (11) : 1410 - 1422
  • [5] Sonic Hedgehog Promotes Desmoplasia in Pancreatic Cancer
    Bailey, Jennifer M.
    Swanson, Benjamin J.
    Hamada, Tomofumi
    Eggers, John P.
    Singh, Pankaj K.
    Caffery, Thomas
    Ouellette, Michel M.
    Hollingsworth, Michael A.
    [J]. CLINICAL CANCER RESEARCH, 2008, 14 (19) : 5995 - 6004
  • [6] Impaired Synthesis of Stromal Components in Response to Minnelide Improves Vascular Function, Drug Delivery, and Survival in Pancreatic Cancer
    Banerjee, Sulagna
    Modi, Shrey
    McGinn, Olivia
    Zhao, Xianda
    Dudeja, Vikas
    Ramakrishnan, Sundaram
    Saluja, Ashok K.
    [J]. CLINICAL CANCER RESEARCH, 2016, 22 (02) : 415 - 425
  • [7] Stromal fibroblasts in cancer initiation and progression
    Bhowmick, NA
    Neilson, EG
    Moses, HL
    [J]. NATURE, 2004, 432 (7015) : 332 - 337
  • [8] Remodelling the extracellular matrix in development and disease
    Bonnans, Caroline
    Chou, Jonathan
    Werb, Zena
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2014, 15 (12) : 786 - 801
  • [9] Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer
    Brahmer, Julie R.
    Tykodi, Scott S.
    Chow, Laura Q. M.
    Hwu, Wen-Jen
    Topalian, Suzanne L.
    Hwu, Patrick
    Drake, Charles G.
    Camacho, Luis H.
    Kauh, John
    Odunsi, Kunle
    Pitot, Henry C.
    Hamid, Omid
    Bhatia, Shailender
    Martins, Renato
    Eaton, Keith
    Chen, Shuming
    Salay, Theresa M.
    Alaparthy, Suresh
    Grosso, Joseph F.
    Korman, Alan J.
    Parker, Susan M.
    Agrawal, Shruti
    Goldberg, Stacie M.
    Pardoll, Drew M.
    Gupta, Ashok
    Wigginton, Jon M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (26) : 2455 - 2465
  • [10] Pharmacokinetics and Toxicology of a Fibroblast Activation Protein (FAP)-Activated Prodrug in Murine Xenograft Models of Human Cancer
    Brennen, W. Nathaniel
    Rosen, D. Marc
    Chaux, Alcides
    Netto, George J.
    Isaacs, John T.
    Denmeade, Samuel R.
    [J]. PROSTATE, 2014, 74 (13) : 1308 - 1319