Linear/Linear Rational Spline Interpolation

被引:3
|
作者
Ideon, E. [1 ]
Oja, P. [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
rational spline; interpolation; superconvergence;
D O I
10.3846/1392-6292.2010.15.447-455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a strictly monotone function y on [a, b] we describe the construction of an interpolating linear/linear rational spline S of smoothness class C-1. We show that for the linear/linear rational splines we obtain parallel to S(x(i)) - y(x(i))parallel to(infinity) = O(h(4)) on uniform mesh x(i) = a + ih, i = 0, ... , n. We prove also the superconvergence of order h(3) for the first derivative and of order h(2) for the second derivative of S in certain points. Numerical examples support the obtained theoretical results.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 50 条
  • [1] Quadratic/Linear Rational Spline Interpolation
    Ideon, Erge
    Oja, Peeter
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 250 - 259
  • [2] Constrained interpolation using rational cubic spline with linear denominators
    Department of Applied Mathematics, Shandong University of Technology, Jinan, 250061, China
    不详
    J. Appl. Math. Comp., 1 (203-215):
  • [3] Constrained interpolation using rational Cubic Spline with linear denominators
    Qi Duan
    Gongxue Xu
    Aikui Liu
    Xuefu Wang
    Fuhua Frank Cheng
    Korean Journal of Computational and Applied Mathematics, 1999, 6 (1): : 203 - 215
  • [4] Linear/linear rational spline collocation for linear boundary value problems
    Ideon, Erge
    Oja, Peeter
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 32 - 44
  • [5] Quadratic/linear rational spline histopolation
    Helle Hallik
    Peeter Oja
    BIT Numerical Mathematics, 2017, 57 : 629 - 648
  • [6] Quadratic/linear rational spline histopolation
    Hallik, Helle
    Oja, Peeter
    BIT NUMERICAL MATHEMATICS, 2017, 57 (03) : 629 - 648
  • [7] A New GM(1,1) Based on Piecewise Rational Linear/linear Monotonicity-preserving Interpolation Spline
    Chen, Fengyi
    Zhu, Yuanpeng
    ENGINEERING LETTERS, 2021, 29 (03) : 849 - 855
  • [8] LINEAR AND QUADRATIC SPLINE INTERPOLATION AT KNOT AVERAGES
    MARSDEN, MJ
    JOURNAL OF APPROXIMATION THEORY, 1983, 38 (03) : 201 - 208
  • [9] The linear pencil approach to rational interpolation
    Beckermann, Bernhard
    Derevyagin, Maxim
    Zhedanov, Alexei
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (06) : 1322 - 1346
  • [10] Quadratic/linear rational spline collocation for linear boundary value problems
    Ideon, Erge
    Oja, Peeter
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 143 - 158