Linear/Linear Rational Spline Interpolation

被引:4
作者
Ideon, E. [1 ]
Oja, P. [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
rational spline; interpolation; superconvergence;
D O I
10.3846/1392-6292.2010.15.447-455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a strictly monotone function y on [a, b] we describe the construction of an interpolating linear/linear rational spline S of smoothness class C-1. We show that for the linear/linear rational splines we obtain parallel to S(x(i)) - y(x(i))parallel to(infinity) = O(h(4)) on uniform mesh x(i) = a + ih, i = 0, ... , n. We prove also the superconvergence of order h(3) for the first derivative and of order h(2) for the second derivative of S in certain points. Numerical examples support the obtained theoretical results.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 10 条
  • [1] CHARACTERIZATION OF LOCAL STRICT CONVEXITY PRESERVING INTERPOLATION METHODS BY C(1) FUNCTIONS
    CARNICER, JM
    DAHMEN, W
    [J]. JOURNAL OF APPROXIMATION THEORY, 1994, 77 (01) : 2 - 30
  • [2] Convergence rate of rational spline histopolation
    Fischer, M.
    Oja, P.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (01) : 29 - 38
  • [3] COLLOCATION WITH QUADRATIC AND CUBIC-SPLINES
    KHALIFA, AKA
    EILBECK, JC
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1982, 2 (01) : 111 - 121
  • [4] Kvasov B., 1983, Chisl. Metody Mekh. Sploshn. Sredy, V14, P68
  • [5] KVASOV BI, 1981, 3 ACAD NAUK SSSR I T
  • [6] Quasi-interpolation by splines on the uniform knot sets
    Leetma, E.
    Vainikko, G.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (01) : 107 - 120
  • [7] Comonotone adaptive interpolating splines
    Oja, P
    [J]. BIT, 2002, 42 (04): : 842 - 855
  • [8] Low degree rational spline interpolation
    Oja, P
    [J]. BIT, 1997, 37 (04): : 901 - 909
  • [9] Oja P., 1990, P EST ACAD SCI, V39, P335
  • [10] Oja P., 1987, P EST ACAD SCI, V36, P118