First-passage-time densities and avoiding probabilities for birth-and-death processes with symmetric sample paths

被引:8
作者
Di Crescenzo, A [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
truncated processes; transition probabilities; spatial symmetry; absorption; reflection; first-passage time; avoiding transition probabilities; M/M/1 queueing system; busy period;
D O I
10.1017/S0021900200015011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For truncated birth-and-death processes with two absorbing or two reflecting boundaries, necessary and sufficient conditions on the transition rates are given such that the transition probabilities satisfy a suitable spatial symmetry relation. This allows one to obtain simple expressions for first-passage-time densities and for certain avoiding transition probabilities. An application to an M/M/1 queueing system with two finite sequential queueing rooms of equal sizes is finally provided.
引用
收藏
页码:383 / 394
页数:12
相关论文
共 22 条
[1]  
Abate J., 1991, Queueing Systems Theory and Applications, V9, P323, DOI 10.1007/BF01158470
[2]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[3]  
Anderson W. J., 1991, CONTINUOUS TIME MARK
[4]  
[Anonymous], T AM MATH SOC
[5]  
BOHM W, 1994, STUD SCI MATH HUNG, V29, P397
[6]  
Feller W., 1968, INTRO PROBABILITY TH
[7]   A SYMMETRY-BASED CONSTRUCTIVE APPROACH TO PROBABILITY DENSITIES FOR ONE-DIMENSIONAL DIFFUSION-PROCESSES [J].
GIORNO, V ;
NOBILE, AG ;
RICCIARDI, LM .
JOURNAL OF APPLIED PROBABILITY, 1989, 26 (04) :707-721
[8]   A SOLVABLE MODEL FOR A FINITE-CAPACITY QUEUING SYSTEM [J].
GIORNO, V ;
NEGRI, C ;
NOBILE, AG .
JOURNAL OF APPLIED PROBABILITY, 1985, 22 (04) :903-911
[9]  
Karlin S., 1957, Trans. Amer. Math. Soc., V85, P489, DOI DOI 10.1090/S0002-9947-1957-0091566-1
[10]  
Karlin Samuel, 1957, T AM MATH SOC, V86, P366, DOI 10.1090/S0002-9947-1957-0094854-8