A Performance Study of Moving Particle Semi-Implicit Method for Incompressible Fluid Flow on GPU

被引:0
|
作者
Kataraki, Kirankumar V. [1 ]
Chickerur, Satyadhyan [2 ]
机构
[1] KLE Dr MS Sheshgiri Coll Engn & Technol, Belgaum, India
[2] KLE Technol Univ, Hubballi, India
关键词
CPU; CUDA; GPU; Incompressible; Particles; SIMULATION; ACCURATE;
D O I
10.4018/IJDST.2020010107
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of moving particle semi-implicit (MPS) is to simulate the incompressible flow of fluids in free surface. MPS, when implemented, consumes a lot of time and thus, needs a very powerful computing system. Instead of using parallel computing system, the performance level of the MPS model can be improved by using graphics processing units (GPUs). The aim is to have a computing system that is capable of performing at high levels thereby enhancing the speed of processing the numerical computations required in MPS. The primary aim of the study is to build a GPU-accelerated MPS model using CUDA aimed at reducing the time taken to perform the search for neighboring particles. In order to increase the GPU processing speed, specific consideration is given towards the optimization of a neighboring particle search process. The numerical model of MPS is performed using the governing equations, notably the Navier-Stokes equation. The simulation model indicates that using GPU based MPS produce better performance compared to the traditional arrangement of using CPUs.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [1] Implementation of the moving particle semi-implicit method on GPU
    Zhu XiaoSong
    Cheng Liang
    Lu Lin
    Teng Bin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (03) : 523 - 532
  • [2] GPU-acceleration for Moving Particle Semi-Implicit method
    Hori, Chiemi
    Gotoh, Hitoshi
    Ikari, Hiroyuki
    Khayyer, Abbas
    COMPUTERS & FLUIDS, 2011, 51 (01) : 174 - 183
  • [3] Stable multiphase moving particle semi-implicit method for incompressible interfacial flow
    Duan, Guangtao
    Chen, Bin
    Koshizuka, Seiichi
    Xiang, Hao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 636 - 666
  • [4] An enhanced moving particle semi-implicit method for simulation of incompressible fluid flow and fluid-structure interaction
    Cai, Qinghang
    Chen, Ronghua
    Guo, Kailun
    Tian, Wenxi
    Qiu, Suizheng
    Su, G. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 41 - 57
  • [5] On the free surface boundary of moving particle semi-implicit method for thermocapillary flow
    Wang, Zidi
    Sugiyama, Tomoyuki
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 266 - 283
  • [6] Implementation of the moving particle semi-implicit method for free-surface flows on GPU clusters
    Gou, Wenjin
    Zhang, Shuai
    Zheng, Yao
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 244 : 13 - 24
  • [7] Comparison of parallel solvers for Moving Particle Semi-Implicit method
    Duan, Guangtao
    Chen, Bin
    ENGINEERING COMPUTATIONS, 2015, 32 (03) : 834 - 862
  • [8] Enhancement of stability and accuracy of the moving particle semi-implicit method
    Khayyer, Abbas
    Gotoh, Hitoshi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 3093 - 3118
  • [9] Study of the free surface flow of water-kaolinite mixture by moving particle semi-implicit (MPS) method
    Xie, J.
    Tai, Y. C.
    Jin, Y. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2014, 38 (08) : 811 - 827
  • [10] Moving particle semi-implicit method with improved pressures stability properties
    Fadafan, Masoud Arami
    Kermani, Masoud-Reza Hessami
    JOURNAL OF HYDROINFORMATICS, 2018, 20 (06) : 1268 - 1285