A unified approach to scalar, vector, and tensor Slepian functions on the sphere and their construction by a commuting operator

被引:1
作者
Michel, V [1 ]
Plattner, A. [2 ]
Seibert, K. [1 ]
机构
[1] Univ Siegen, Dept Math, Geomath Grp, Siegen, Germany
[2] Univ Alabama, Dept Geol Sci, Tuscaloosa, AL USA
关键词
Commuting operator; constructive approximation; numerically efficient construction; Slepian functions; sphere; spherical harmonic; spin weight; tensorial functions; SPHEROIDAL WAVE-FUNCTIONS; HARMONICS;
D O I
10.1142/S0219530521500317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a unified approach for constructing Slepian functions - also known as prolate spheroidal wave functions - on the sphere for arbitrary tensor ranks including scalar, vectorial, and rank 2 tensorial Slepian functions, using spin-weighted spherical harmonics. For the special case of spherical cap regions, we derived commuting operators, allowing for a numerically stable and computationally efficient construction of the spin-weighted spherical-harmonic-based Slepian functions. Linear relationships between the spin-weighted and the classical scalar, vectorial, tensorial, and higher-rank spherical harmonics allow the construction of classical spherical-harmonic-based Slepian functions from their spin-weighted counterparts, effectively rendering the construction of spherical-cap Slepian functions for any tensorial rank a computationally fast and numerically stable task.
引用
收藏
页码:947 / 988
页数:42
相关论文
共 46 条
[1]   Band-limited functions on a bounded spherical domain:: the Slepian problem on the sphere [J].
Albertella, A ;
Sansò, F ;
Sneeuw, N .
JOURNAL OF GEODESY, 1999, 73 (09) :436-447
[2]  
Amann H., 2009, Analysis III
[3]  
[Anonymous], 1998, Theoretical global Seismology
[4]  
Bauer F. L., 1960, NUMER MATH, V2, P137, DOI [10.1007/bf01386217, DOI 10.1007/BF01386217]
[5]   Spectral estimation on a sphere in geophysics and cosmology [J].
Dahlen, F. A. ;
Simons, Frederik J. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 174 (03) :774-807
[6]  
del Castillo GFT, 2007, REV MEX FIS, V53, P125
[7]   THE RELATIONSHIP BETWEEN MONOPOLE HARMONICS AND SPIN-WEIGHTED SPHERICAL-HARMONICS [J].
DRAY, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (05) :1030-1033
[8]  
Edmonds A.R., 1957, Angular Momentum in Quantum Mechanics
[9]   SPATIALLY RESTRICTED INTEGRALS IN GRADIOMETRIC BOUNDARY VALUE PROBLEMS [J].
Eshagh, M. .
ARTIFICIAL SATELLITES-JOURNAL OF PLANETARY GEODESY, 2009, 44 (04) :131-148
[10]   Sparse regularization of inverse gravimetry-case study: spatial and temporal mass variations in South America [J].
Fischer, D. ;
Michel, V. .
INVERSE PROBLEMS, 2012, 28 (06)