Magnetic field enhancement beyond the skin-depth limit

被引:0
|
作者
Shin, Jonghwa [1 ]
Park, Namkyoo [2 ]
Fan, Shanhui [3 ]
Lee, Yong-Hee [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Taejon, South Korea
[2] Seoul Natl Univ, Dept Elect Engn, Seoul, South Korea
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
基金
新加坡国家研究基金会;
关键词
magnetic field; field enhancement; plasmonics; nanophotonics; Babinet's principle; SURFACE-PLASMONS;
D O I
10.1117/12.841805
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Electric field enhancement has been actively studied recently and many metallic structures that are capable of locally enhancing electric field have been reported. The Babinet's principle can be utilized, especially in the form of Booker's extension, to transform the known electric field enhancing structures into magnetic field enhancing structures. The authors explain this transformation process and discuss the regime in which this principle breaks down. Unless the metals used can be well approximated with a perfect electric conductor model, the principle's predictions fail to hold true. Authors confirm this aspect using numerical simulations based on realistic material parameters for actual metals. There is large discrepancy especially when the structural dimensions are comparable or less than the skin-depth at the wavelength of interest. An alternative way to achieve magnetic field enhancement is presented and the design of a connected bow-tie structure is proposed as an example. FDTD simulation results confirm the operation of the proposed structure.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit
    Seo M.A.
    Park H.R.
    Koo S.M.
    Park D.J.
    Kang J.H.
    Suwal O.K.
    Choi S.S.
    Planken P.C.M.
    Park G.S.
    Park N.K.
    Park Q.H.
    Kim D.S.
    Nature Photonics, 2009, 3 (3) : 152 - 156
  • [2] Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit
    Seo, M. A.
    Park, H. R.
    Koo, S. M.
    Park, D. J.
    Kang, J. H.
    Suwal, O. K.
    Choi, S. S.
    Planken, P. C. M.
    Park, G. S.
    Park, N. K.
    Park, Q. H.
    Kim, D. S.
    NATURE PHOTONICS, 2009, 3 (03) : 152 - 156
  • [3] Photonic skin-depth engineering
    Jahani, Saman
    Jacob, Zubin
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (07) : 1346 - 1353
  • [4] RF skin-depth measurement of UIrGe in high magnetic fields
    Nasreen, Farzana
    Kothapalli, Karunakar
    Altarawneh, Moaz Mohammad
    Nakotte, Heinz
    Harrison, Neil
    Bruck, Ekkehard
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2010), 2011, 273
  • [5] Pitfalls in Electromagnetic Skin-Depth Determination
    Chung, D. D. L.
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (05) : 1893 - 1899
  • [6] More accurate skin-depth approximations
    Mestel, A.J., 1600, (45):
  • [7] Terahertz Extreme Skin-Depth Waveguides
    Lees, Harrison
    Headland, Daniel
    Withayachumnankul, Withawat
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2024, 14 (05) : 758 - 767
  • [8] Pitfalls in Electromagnetic Skin-Depth Determination
    D. D. L. Chung
    Journal of Electronic Materials, 2022, 51 : 1893 - 1899
  • [9] MORE ACCURATE SKIN-DEPTH APPROXIMATIONS
    MESTEL, AJ
    IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 45 (01) : 33 - 48
  • [10] STRUCTURE OF ALFVEN WAVES AT THE SKIN-DEPTH SCALE
    MORALES, GJ
    LORITSCH, RS
    MAGGS, JE
    PHYSICS OF PLASMAS, 1994, 1 (12) : 3765 - 3774