A Simple Differentiable Programming Language

被引:28
作者
Abadi, Martin [1 ]
Plotkin, Gordon D. [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
来源
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL | 2020年 / 4卷 / POPL期
关键词
automatic differentiation; differentiable programming; CALCULUS;
D O I
10.1145/3371106
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automatic differentiation plays a prominent role in scientific computing and in modern machine learning, often in the context of powerful programming systems. The relation of the various embodiments of automatic differentiation to the mathematical notion of derivative is not always entirely clear discrepancies can arise, sometimes inadvertently. In order to study automatic differentiation in such programming contexts, we define a small but expressive programming language that includes a construct for reverse-mode differentiation. We give operational and denotational semantics for this language. The operational semantics employs popular implementation techniques, while the denotational semantics employs notions of differentiation familiar from real analysis. We establish that these semantics coincide.
引用
收藏
页数:28
相关论文
共 47 条
[41]  
Slepak J, 2014, LECT NOTES COMPUT SC, V8410, P27
[42]  
Song S, 2013, IEEE GLOB CONF SIG, P245, DOI 10.1109/GlobalSIP.2013.6736861
[43]  
Tokui, 2015, 29 ANN C NEUR INF PR
[44]  
Trench W. F., 2003, Introduction to Real Analysis
[45]  
Vakar M., 2018, DOM 13 WORKSH
[46]  
van Merrienboer B., 2018, ANN C NEUR INF PROC, P6259
[47]   Dynamic Control Flow in Large-Scale Machine Learning [J].
Yu, Yuan ;
Abadi, Martin ;
Barham, Paul ;
Brevdo, Eugene ;
Burrows, Mike ;
Davis, Andy ;
Dean, Jeff ;
Ghemawat, Sanjay ;
Harley, Tim ;
Hawkins, Peter ;
Isard, Michael ;
Kudlur, Manjunath ;
Monga, Rajat ;
Murray, Derek ;
Zheng, Xiaoqiang .
EUROSYS '18: PROCEEDINGS OF THE THIRTEENTH EUROSYS CONFERENCE, 2018,