HAMILTON-JACOBI THEORY IN k-SYMPLECTIC FIELD THEORIES

被引:19
作者
De Leon, M. [1 ]
Martin De Diego, D. [1 ]
Marrero, J. C. [2 ]
Salgado, M. [3 ]
Vilarino, S. [4 ]
机构
[1] Inst Ciencias Matemat CSIC UAM UC3M UCM, CSIC, Madrid 28006, Spain
[2] Univ La Laguna, Dept Matemat Fundamental, Fac Matemat, E-38207 San Cristobal la Laguna, Spain
[3] Univ Santiago de Compostela, Dept Xeometria & Topoloxia, Fac Matemat, Santiago De Compostela 15782, Spain
[4] Univ A Coruna, Dept Matemat, Fac Ciencias, La Coruna 15071, Spain
关键词
Hamilton-Jacobi theory; k-symplectic field theories; TANGENT-BUNDLES; FORMALISM; MANIFOLDS; GEOMETRY;
D O I
10.1142/S0219887810004919
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we extend the geometric formalism of Hamilton-Jacobi theory for Mechanics to the case of classical field theories in the k-symplectic framework.
引用
收藏
页码:1491 / 1507
页数:17
相关论文
共 26 条
  • [1] Abraham R., 1978, Foundations of Mechanics
  • [2] [Anonymous], HAMILTONJACOBI THEOR
  • [3] K-SYMPLECTIC STRUCTURES
    AWANE, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (12) : 4046 - 4052
  • [4] Awane A., 2000, PFAFFIAN SYSTEMS K S
  • [5] Hamilton-Jacobi approach for first order actions and theories with higher derivatives
    Bertin, M. C.
    Pimentel, B. M.
    Pompeia, P. J.
    [J]. ANNALS OF PHYSICS, 2008, 323 (03) : 527 - 547
  • [6] Constructing a class of solutions for the Hamilton-Jacobi equation in field theory
    Bruno, Danilo
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [7] On the geometry of multisymplectic manifolds
    Cantrijn, F
    Ibort, A
    De León, M
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 66 : 303 - 330
  • [8] CARINENA JF, ARXIV09082453
  • [9] Geometric Hamilton-Jacobi theory
    Carinena, Jose F.
    Gracia, Xavier
    Marmo, Giuseppe
    Martinez, Eduardo
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1417 - 1458
  • [10] de Len M., 2009, Variations, Geometry and Physics, P129