HAMILTON-JACOBI THEORY IN k-SYMPLECTIC FIELD THEORIES

被引:19
作者
De Leon, M. [1 ]
Martin De Diego, D. [1 ]
Marrero, J. C. [2 ]
Salgado, M. [3 ]
Vilarino, S. [4 ]
机构
[1] Inst Ciencias Matemat CSIC UAM UC3M UCM, CSIC, Madrid 28006, Spain
[2] Univ La Laguna, Dept Matemat Fundamental, Fac Matemat, E-38207 San Cristobal la Laguna, Spain
[3] Univ Santiago de Compostela, Dept Xeometria & Topoloxia, Fac Matemat, Santiago De Compostela 15782, Spain
[4] Univ A Coruna, Dept Matemat, Fac Ciencias, La Coruna 15071, Spain
关键词
Hamilton-Jacobi theory; k-symplectic field theories; TANGENT-BUNDLES; FORMALISM; MANIFOLDS; GEOMETRY;
D O I
10.1142/S0219887810004919
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we extend the geometric formalism of Hamilton-Jacobi theory for Mechanics to the case of classical field theories in the k-symplectic framework.
引用
收藏
页码:1491 / 1507
页数:17
相关论文
共 26 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], HAMILTONJACOBI THEOR
[3]   K-SYMPLECTIC STRUCTURES [J].
AWANE, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (12) :4046-4052
[4]  
Awane A., 2000, PFAFFIAN SYSTEMS K S
[5]   Hamilton-Jacobi approach for first order actions and theories with higher derivatives [J].
Bertin, M. C. ;
Pimentel, B. M. ;
Pompeia, P. J. .
ANNALS OF PHYSICS, 2008, 323 (03) :527-547
[6]   Constructing a class of solutions for the Hamilton-Jacobi equation in field theory [J].
Bruno, Danilo .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
[7]   On the geometry of multisymplectic manifolds [J].
Cantrijn, F ;
Ibort, A ;
De León, M .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 66 :303-330
[8]  
CARINENA JF, ARXIV09082453
[9]   Geometric Hamilton-Jacobi theory [J].
Carinena, Jose F. ;
Gracia, Xavier ;
Marmo, Giuseppe ;
Martinez, Eduardo ;
Munoz-Lecanda, Miguel C. ;
Roman-Roy, Narciso .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) :1417-1458
[10]  
de Len M., 2009, Variations, Geometry and Physics, P129