Large-scale Classification of 12-lead ECG with Deep Learning

被引:18
作者
Chen, Yu-Jhen [1 ]
Liu, Chien-Liang [1 ]
Tseng, Vincent S. [2 ]
Hu, Yu-Feng [3 ]
Chen, Shih-Ann [3 ]
机构
[1] Natl Chiao Tung Univ, Dept Ind Engn & Management, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
[3] Taipei Vet Gen Hosp, Dept Med, Div Cardiol, Heart Rhythm Ctr, Taipei, Taiwan
来源
2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI) | 2019年
关键词
12-lead ECG; Classification Model; Deep Learning; CNN; LSTM;
D O I
10.1109/bhi.2019.8834468
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The 12-lead Electrocardiography(ECG) is the gold standard in diagnosing cardiovascular diseases, but most previous studies focused on 1-lead or 2-lead ECG. This work uses a large data set, comprising 7,704 12-lead ECG samples, as the data source, and the goal is to develop a classification model for six common types of urgent arrhythmias. We consider the characteristics of multivariate time-series data to design a novel deep learning model, combining convolutional neural network (CNN) and long short-term memory (LSTM) to learn feature representations as well as the temporal relationship between the latent features. The experimental results indicate that the proposed model achieves promising results and outperforms the other alternatives. We also provide brief analysis about the proposed model.
引用
收藏
页数:4
相关论文
共 50 条
[31]   DEEP LEARNING CLASSIFICATION OF LARGE-SCALE POINT CLOUDS: A CASE STUDY ON CUNEIFORM TABLETS [J].
Hagelskjaer, Frederik .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, :826-830
[32]   Optimal ECG-lead selection increases generalizability of deep learning on ECG abnormality classification [J].
Lai, Changxin ;
Zhou, Shijie ;
Trayanova, Natalia A. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2212)
[33]   Overview of featurization techniques used in traditional versus emerging deep learning-based algorithms for automated interpretation of the 12-lead ECG [J].
Finlay, Dewar ;
Bond, Raymond ;
Jennings, Michael ;
McCausland, Christopher ;
Guldenring, Daniel ;
Kennedy, Alan ;
Biglarbeigi, Pardis ;
Al-Zaiti, Salah S. ;
Brisk, Rob ;
McLaughlin, James .
JOURNAL OF ELECTROCARDIOLOGY, 2021, 69 :7-11
[34]   Attention deep learning-based large-scale learning classifier for Cassava leaf disease classification [J].
Ravi, Vinayakumar ;
Acharya, Vasundhara ;
Pham, Tuan D. .
EXPERT SYSTEMS, 2022, 39 (02)
[35]   AI analysis for ejection fraction estimation from 12-lead ECG [J].
Devkota, Alina ;
Prajapati, Rukesh ;
El-Wakeel, Amr ;
Adjeroh, Donald ;
Patel, Brijesh ;
Gyawali, Prashnna .
SCIENTIFIC REPORTS, 2025, 15 (01)
[36]   Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms [J].
Vranken, Jeroen F. ;
van de Leur, Rutger R. ;
Gupta, Deepak K. ;
Orozco, Luis E. Juarez ;
Hassink, Rutger J. ;
van der Harst, Pim ;
Doevendans, Pieter A. ;
Gulshad, Sadaf ;
van Es, Rene .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (03) :401-415
[37]   HammingMesh: A Network Topology for Large-Scale Deep Learning [J].
Hoefler, Torsten ;
Bonato, Tommaso ;
De Sensi, Daniele ;
Di Girolamo, Salvatore ;
Li, Shigang ;
Heddes, Marco ;
Belk, Jon ;
Goel, Deepak ;
Castro, Miguel ;
Scott, Steve .
SC22: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2022,
[38]   ECG-surv: A deep learning-based model to predict time to 1-year mortality from 12-lead electrocardiogram [J].
Lin, Ching-Heng ;
Liu, Zhi-Yong ;
Chen, Jung-Sheng ;
Fann, Yang C. ;
Wen, Ming-Shien ;
Kuo, Chang-Fu .
BIOMEDICAL JOURNAL, 2025, 48 (01)
[39]   A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to a Large-Scale Dataset [J].
Chhapariya, Koushikey ;
Benoit, Alexandre ;
Mohan Buddhiraju, Krishna ;
Kumar, Anil .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
[40]   Automatic large-scale data acquisition via crowdsourcing for crosswalk classification: A deep learning approach [J].
Berriel, Rodrigo F. ;
Rossi, Franco Schmidt ;
de Souza, Alberto F. ;
Oliveira-Santos, Thiago .
COMPUTERS & GRAPHICS-UK, 2017, 68 :32-42